• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 15
  • 3
  • 2
  • 1
  • Tagged with
  • 43
  • 43
  • 43
  • 12
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Genetic changes of chromosome region 15q11-q13 in Prader-Willi and Angelman syndromes in Finland

Kokkonen, H. (Hannaleena) 23 May 2003 (has links)
Abstract The Prader-Willi (PWS) and Angelman (AS) syndromes are clinically distinct developmental disorders which are caused by genetic defects in the imprinted domain at chromosome 15q11-q13, resulting in the loss of paternal (PWS) or maternal (AS) gene function. In this study, the genetic changes of 15q11-q13 and their possible inheritance in Finnish PWS (n=76) and AS (n=47) patients are described. The diagnosis could be confirmed by laboratory methods in all PWS and in 43 (91%) AS patients. A deletion of 15q11-q13 accounted for 76% of the PWS and 67% of the AS patients in whom a specific genetic defect had been established. The origin of deletion was always paternal in PWS and maternal in AS. In PWS, deletions of four different sizes were detected, while in AS only type I or II deletions were found. The smallest overlap of deletions/critical region detected was from locus D15S13 to locus D15S10 in PWS and from locus D15S128 to locus D15S12 in AS. A rare recurrence of del(15)(q11q13) due to maternal germ line mosaicism is described. Maternal uniparental disomy of chromosome 15 accounted for 21% of PWS patients and paternal UPD for 2% of AS patients. In PWS, most UPD cases were due to errors in maternal meiosis (87%), most commonly leading to maternal heterodisomy (MI error). In AS, a rare error in the second segregation of paternal meiosis was found. UPD was associated with advanced maternal age, the mean being 34.6 years. Imprinting defects were found in 3% of PWS (two non-IC-deletions) and 11% of AS (IC deletion in one sib pair and three non-IC-deletions) patients. In the case with IC deletion, the mutation was seen in several generations. The non-deletion cases were thought to be due to a de novo prezygotic or postzygotic error. In the non-deletion PWS cases, the maternally imprinted paternal chromosome region was shown to have been inherited from the paternal grandmother, while in AS the paternally imprinted maternal chromosome region had been inherited from either the maternal grandfather or the maternal grandmother. The region of IC involved in AS was defined to be 1.15 kb. Five (11%) AS patients with normal DNA methylation test results had a UBE3A mutation. One of the two novel missense mutations (902A→C) had been inherited from the mosaic mother, while the mutation 975T→C was a new one. De novo deletions 1930delAG and 3093delAAGA have also been described previously, suggesting that these sites may be mutation hotspots in UBE3A. Identification of different genetic aetiologies with different recurrence risks is essential for genetic counselling, and close co-operation between clinicians and the laboratory is required both for diagnosis and for the detection of possible inheritance.
12

Clinical and cytogenetic survey of the Prader-Willi syndrome

Butler, Merlin Gene January 1984 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
13

Non-coding RNA genes lost in Prader-Willi Syndrome stabilize target RNAs

Kocher, Matthew Afshin 27 May 2021 (has links)
Prader-Willi Syndrome (PWS) is a genetic disease that results in abnormal hormone levels, developmental delay, intellectual disability, hypogonadism, and excessive appetite. The disease is caused by a de novo genetic deletion in chromosome 15. While many of the deleted genes have been identified, there is little known about their molecular function. There is evidence that a cluster of non-coding RNA genes in the deleted region known as the SNORD116 genes may be the most critical genes deleted in Prader-Willi Syndrome. It is unknown what the SNORD116 genes do at the molecular level, but recent evidence suggests they regulate the expression of other genes involved in the neuroendocrine system. Specifically, the SNORD116 gene is implicated in regulation of NHLH2, a transcription factor gene which plays a key role in development, hormonal regulation, and body weight. In this study we identify phylogenetically conserved regions of SNORD116 and predict interactions with its potential downstream RNA targets. We show that mouse Snord116 post-transcriptionally increases Nhlh2 RNA levels dependent on its 3'UTR and protects it from degradation within 45 minutes of its transcription. Additionally, a single nucleotide variant within Nhlh2 at the predicted Snord116 interaction site may disrupt Snord116's protective effect. This is the first observation of a molecular mechanism for Snord116, identifying its role in RNA stability, and leads us closer to understanding Prader-Willi Syndrome and finding a possible treatment. However, Snord116 in vitro knockdown or paternally inherited in vivo deletion fail to detect differential expression of Nhlh2, likely due to missing the key timepoint of Snord116 regulatory effects on Nhlh2 RNA soon after its transcriptional stimulation, and dependent on leptin signals. Furthermore, the hypothalamic mRNA expression profile of PWS mouse models fed a nutraceutical dietary supplement of conjugated linoleic acid reveals minimal overall changes, while the effect of diet may be stronger than genotype and potentially changes gene expression of metabolic molecular pathways. / Doctor of Philosophy / Prader-Willi Syndrome is a genetic disease that results in abnormal hormone levels, slow development, intellectual disability, gonad deficiency, and excessive appetite. The disease is caused by a genetic deletion in chromosome 15 that is almost always a spontaneous mutation not inherited from the parents. While many of the deleted genes have been identified, there is little known about what their molecular function is. There is evidence that a cluster of genes in the deleted region known as the SNORD116 genes may be the most critical genes deleted in Prader-Willi Syndrome. It is unknown what the SNORD116 genes do at the molecular level, but recent evidence suggests that it regulates other genes involved in the hormone system. Specifically, the SNORD116 gene is implicated to regulate the levels of NHLH2, a gene which plays a key role in development, hormonal regulation, and body weight. In this study we identify key regions of SNORD116 and predict interactions with its potential downstream targets. We show that SNORD116 increases NHLH2 levels and slows its degradation at the RNA transcript level. This is the first observation of a molecular mechanism for SNORD116 and leads us closer to understanding Prader-Willi Syndrome and finding a possible treatment. However, other mouse models of Snord116 deletion fail to find differences in Nhlh2. This is likely due to missing a brief key timepoint and hormonal signal when Nhlh2 is most subject to Snord116's effects. Furthermore, PWS mouse models fed a supplement intended for weight loss leads to mild overall gene expression changes in the hypothalamus, a brain region that regulates many hormonal signals including appetite and energy balance. The effect of diet may be stronger than genotype in this brain region, with diet potentially changing the activity of metabolic molecular pathways.
14

Endocrine and metabolic aspects of adult Prader Willi syndrome with special emphasis on the effect of growth hormone treatment /

Höybye, Charlotte, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
15

The Role of SNORD116 in the Neuromolecular Pathogenesis of the Prader-Willi Syndrome

Cole, Lisa January 2016 (has links)
Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone. Rare microdeletion PWS patients define a 91 kb minimum critical deletion region encompassing three genes, including the non-coding SNORD116. Induced pluripotent stem cells were generated from skin cells of three large deletion (5-6 Mb) PWS patients and one novel microdeletion (118 kb) PWS patient. We found that genes within the PWS region, including SNRPN and NDN, showed persistence of DNA methylation after iPSC reprogramming and differentiation to neurons. Genes within the PWS minimum critical deletion region remain silenced in both PWS large deletion and microdeletion iPSC following reprogramming. We find that NHLH2 and PC1 (protein and transcript) are reduced in PWS patient iPSC-derived neurons. Nhlh2 and Pcsk1 expression are reduced in hypothalami of fasted Snord116p-/m+ mice while hypothalamic AgRP and Npy remain elevated following refeeding in association with relative hyperphagia. Nhlh2-/- mice have growth deficiencies from 4-7 weeks of age, develop hyperphagic obesity as adults, and are hypogonadal. Nhlh2 promotes expression of the prohormone convertase, Pcsk1 (PC1). PC1 is a neuroendocrine prohormone convertase that catalyzes the processing of hormones to “mature,” active hormones. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased growth hormone, and hypoinsulinemic diabetes due to impaired prohormone processing. Snord116p-/m+ mice display in vivo functional defects in prohormone processing of proinsulin, proGHRH, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency which results from absence of functional SNORD116. In addition to hyperphagic obesity and endocrinopathies, global developmental delay (delayed motor milestones, delayed language development) is a major characteristic of the Prader-Willi syndrome (PWS). We identified neuroanatomical defects in iPSC-derived neurons of individuals with PWS and mice deficient for Snord116. iPSC-derived neurons from PWS patients and neurons from Snord116p-/m+ mice, have smaller soma and decreased numbers of neurites. Reduced neuron cell body size is apparent in utero and persists at least until 4 weeks of age in Snord116p-/m+ mice. The reduction in neuronal soma size is associated with smaller neuronal nucleoli. There are also developmental defects in the endocrine pancreas of Snord116p-/m+ animals that persist into adulthood (≥20 weeks). Mice lacking Snord116 have smaller pancreatic islets and within the islet the percentage of δ-cells is increased, while the percentage of α-cells is reduced. In Snord116p-/m+ isolated islets, Sst and Hhex are upregulated while Ins1, Ins2, Pdx1, Nkx6-1, and Pax6 are downregulated. There is a 3-fold increase in the percentage of polyhormonal cells in the neonatal islets of Snord116p-/m+ mice, which was due to an increase in cells co-positive with somatostatin. Snord116 may play a role in islet cell lineage specification. Overall, this work suggests that the Snord116 gene cluster is important for developmental processes in the brain as well as endocrine pancreas and prohormone processing in multiple tissues. Loss of elements within this cluster could account for the PWS by virtue of effects on the expression of PCSK1.
16

Role of the Prader-Willi syndrome proteins necdin and Magel2 in the nervous system

Tennese, Alysa 11 1900 (has links)
Prader-Willi syndrome (PWS) is a rare, neurodevelopmental disorder with multiple features caused by hypothalamic deficiency, including infantile failure to thrive, hyperphagia leading to obesity, growth hormone deficiency, hypogonadism, and central adrenal insufficiency. Other features of PWS including global developmental delay, hypotonia, pain insensitivity, gastrointestinal dysfunction, and psychiatric disorders are caused by deficits in other regions of the nervous system. PWS is caused by the loss of a subset of paternally-expressed genes on chromosome 15, which includes NDN and MAGEL2. Necdin and Magel2 are both members of the melanoma antigen (MAGE) family of proteins and are expressed throughout development, particularly in the nervous system. This thesis describes experiments that examine the loss of function of necdin and Magel2 in mice and their potential roles in the pathogenesis of PWS. Targeted inactivation of Ndn and Magel2 in mice has aided in determining how loss of function of these proteins affects the development and function of the nervous system. Loss of necdin causes reduced axonal outgrowth and neuronal differentiation in the central and peripheral sensory nervous systems. I examined the autonomic nervous system in Ndn-null embryos and identified a defect in the migration of the most rostral sympathetic chain ganglion and consequently increased neuronal cell death and reduced innervation of target tissues supplied by this ganglion. Reduced axonal outgrowth was observed throughout the sympathetic nervous system in Ndn-null embryos although no gross deficits in the parasympathetic and enteric nervous systems were identified. Loss of Magel2 causes reduced fertility and abnormal circadian rhythm patterns in mice. I further identified an altered response to stress, a delayed response to insulin-induced hypoglycemia, a reduced stimulated growth hormone response, and lower thyroid hormone levels in Magel2-null mice, indicative of deficits in multiple hypothalamic-pituitary axes. The findings presented in this thesis support a role for necdin and Magel2 in the development and function of the nervous system. The data also indicates that these MAGE proteins play a key role in multiple features of PWS, including endocrine deficiencies and autonomic dysfunction
17

Role of the Prader-Willi syndrome proteins necdin and Magel2 in the nervous system

Tennese, Alysa Unknown Date
No description available.
18

Investigation of the Prader-Willi syndrome protein MAGEL2 in the regulation of Forkhead box transcription factor FOXO1

Devos, Julia J Unknown Date
No description available.
19

Investigation into protein anomalies in Prader-Willi syndrome

Miss Teresa Munce Unknown Date (has links)
No description available.
20

Using mouse models to study the mechanism of imprinting involved in prader-willi and angelman syndromes

Peery, Edwin G., January 2004 (has links)
Thesis (Ph.D.)--University of Florida, 2004. / Typescript. Title from title page of source document. Document formatted into pages; contains 141 pages. Includes Vita. Includes bibliographical references.

Page generated in 0.0432 seconds