• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 19
  • 17
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 29
  • 26
  • 14
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Velocity Variations of the Kaskawulsh Glacier, Yukon Territory, 2009-2011

Darling, Samantha 16 November 2012 (has links)
Laser altimetry and satellite gravity surveys indicate that the St Elias Icefields are currently losing mass and are among the largest non-polar sea level contributors in the world. However, a poor understanding of glacier dynamics in the region is a major hurdle in evaluating regional variations in ice motion and the relationship between changing surface conditions and ice flux. This study combines in-situ dGPS measurements and advanced Radarsat-2 (RS-2) processing techniques to determine daily and seasonal ice velocities for the Kaskawulsh Glacier from summer 2009 to summer 2011. Three permanent dGPS stations were installed along the centreline of the glacier in 2009, with an additional permanent station on the South Arm in 2010. The Precise Point Positioning (PPP) method is used to process the dGPS data using high accuracy orbital reconstruction. RS-2 imagery was acquired on a 24-day cycle from January to March 2010, and from October to March 2010-2011 in a combination of ultra-fine and fine beam modes. Seasonal velocity regimes are readily identifiable in the dGPS results, with distinct variations in both horizontal velocity and vertical motion. The Spring Regime consists of an annual peak in horizontal velocity that corresponds closely with the onset of the melt season and progresses up-glacier, following the onset of melt at each station. The Summer Regime sees variable horizontal velocity and vertical uplift, superimposed on a long-term decline in motion. The Fall Regime sees a gradual slowing at all stations with little variation in horizontal velocity or vertical position. Rapid but short accelerations lasting up to 10 days were seen in the Winter regimes in both 2010 and 2011, occurring at various times throughout each regime. These events initiated at the Upper Station and progress down-glacier at propagation speeds up to 16,380 m day-1 and were accompanied by vertical uplift lasting for similar periods. Three velocity maps, one from the winter of 2010 and two from the fall/winter of 2011, produced from speckle tracking were validated by comparison with dGPS velocity, surface flow direction, and bedrock areas of zero motion, with an average velocity error of 2.0% and average difference in orientation of 4.3º.
12

Potencialidades de serviços on-line de Posicionamento por Ponto Preciso em aplicações geodésicas: uma análise envolvendo longo período de dados das estações da RBMC

Azambuja, José Luiz Fay de January 2015 (has links)
Um método de posicionamento por GNSS (Global Navigation Satellite System) que vem se popularizando nos últimos anos é o Posicionamento por Ponto Preciso (PPP). Este método de posicionamento se utiliza de dados de apenas um receptor e requer, fundamentalmente, o uso de efemérides e correções dos relógios dos satélites precisos. O PPP nos últimos anos ganhou um impulso significativo em sua popularidade devido, principalmente, ao surgimento de serviços gratuitos de processamento on-line. Entre estes serviços on-line de processamento de PPP, destaca-se o fornecido pelo NRCan (Natural Resource Canada), denominado CSRS-PPP (Canadian Spatial Reference System – Precise Point Positioning). Nesta Tese utilizou-se o serviço canadense CSRS-PPP no processamento de um longo período de dados superior a onze anos coletados em noventa e cinco das estações da RBMC. A análise das velocidades obtidas a partir das respectivas séries temporais referentes às coordenadas diárias estimadas pelo CSRS-PPP bem como a determinação de suas coordenadas – através do PPP – referidas à época 2000.4, mostraram resultados com pequenas discrepâncias quando comparadas com os valores oficiais adotados para as estações analisadas. O problema detectado, refere-se à impossibilidade da adoção de velocidades lineares de translação no sistema cartesiano X, Y e Z, tendo em vista que na grande maioria das estações constatou-se um comportamento sazonal referente à altura elipsoidal, variação esta que afeta as translações em X, Y e Z ao longo do ano. Como solução, propõe-se a adoção das velocidades de deslocamento calculadas para coordenadas planas, particularmente as coordenadas UTM, sendo a altura elipsoidal corrigida através de modelos estabelecidos em função da variação sazonal registrada em cada uma das estações da RBMC. / A positioning method for GNSS (Global Navigation Satellite System) that has become more popular in recent years is the Precise Point Positioning (PPP). The PPP refers to the positioning method that utilizes data to only one receiver and requires fundamentally the use of ephemeris and corrections to the precise satellite clock. The PPP in recent years gained a significant boost in its popularity, mainly due to the emergence of free services online processing. Among these PPP processing on-line services, there is the one provided by NRCan (Natural Resource Canada) called CSRS-PPP (Canadian Spatial Reference System - Precise Point Positioning). In this Thesis used if the Canadian service CSRS-PPP to process data for a long period upper through eleven collected at ninety-five of RBMC stations. The analysis of the rates obtained from the respective time series relating to the daily coordinates estimated by the CSRS-PPP and the determination of its coordinates - through PPP - said at the time 2000.4, showed results with minor discrepancies compared with the official values adopted for the analyzed stations. The problem detected, refers to the impossibility of adopting linear translation speeds in the Cartesian system X, Y, and Z, considering that in most of the stations found a seasonal pattern related to the ellipsoidal height, this variation that affects translations in X, Y and Z throughout the year. As a solution, it is proposed the adoption of the forward speeds calculated for planar coordinates, particularly UTM coordinates, and the ellipsoid height corrected by established models depending on seasonal variations recorded in each of the stations RBMC.
13

Potencialidades de serviços on-line de Posicionamento por Ponto Preciso em aplicações geodésicas: uma análise envolvendo longo período de dados das estações da RBMC

Azambuja, José Luiz Fay de January 2015 (has links)
Um método de posicionamento por GNSS (Global Navigation Satellite System) que vem se popularizando nos últimos anos é o Posicionamento por Ponto Preciso (PPP). Este método de posicionamento se utiliza de dados de apenas um receptor e requer, fundamentalmente, o uso de efemérides e correções dos relógios dos satélites precisos. O PPP nos últimos anos ganhou um impulso significativo em sua popularidade devido, principalmente, ao surgimento de serviços gratuitos de processamento on-line. Entre estes serviços on-line de processamento de PPP, destaca-se o fornecido pelo NRCan (Natural Resource Canada), denominado CSRS-PPP (Canadian Spatial Reference System – Precise Point Positioning). Nesta Tese utilizou-se o serviço canadense CSRS-PPP no processamento de um longo período de dados superior a onze anos coletados em noventa e cinco das estações da RBMC. A análise das velocidades obtidas a partir das respectivas séries temporais referentes às coordenadas diárias estimadas pelo CSRS-PPP bem como a determinação de suas coordenadas – através do PPP – referidas à época 2000.4, mostraram resultados com pequenas discrepâncias quando comparadas com os valores oficiais adotados para as estações analisadas. O problema detectado, refere-se à impossibilidade da adoção de velocidades lineares de translação no sistema cartesiano X, Y e Z, tendo em vista que na grande maioria das estações constatou-se um comportamento sazonal referente à altura elipsoidal, variação esta que afeta as translações em X, Y e Z ao longo do ano. Como solução, propõe-se a adoção das velocidades de deslocamento calculadas para coordenadas planas, particularmente as coordenadas UTM, sendo a altura elipsoidal corrigida através de modelos estabelecidos em função da variação sazonal registrada em cada uma das estações da RBMC. / A positioning method for GNSS (Global Navigation Satellite System) that has become more popular in recent years is the Precise Point Positioning (PPP). The PPP refers to the positioning method that utilizes data to only one receiver and requires fundamentally the use of ephemeris and corrections to the precise satellite clock. The PPP in recent years gained a significant boost in its popularity, mainly due to the emergence of free services online processing. Among these PPP processing on-line services, there is the one provided by NRCan (Natural Resource Canada) called CSRS-PPP (Canadian Spatial Reference System - Precise Point Positioning). In this Thesis used if the Canadian service CSRS-PPP to process data for a long period upper through eleven collected at ninety-five of RBMC stations. The analysis of the rates obtained from the respective time series relating to the daily coordinates estimated by the CSRS-PPP and the determination of its coordinates - through PPP - said at the time 2000.4, showed results with minor discrepancies compared with the official values adopted for the analyzed stations. The problem detected, refers to the impossibility of adopting linear translation speeds in the Cartesian system X, Y, and Z, considering that in most of the stations found a seasonal pattern related to the ellipsoidal height, this variation that affects translations in X, Y and Z throughout the year. As a solution, it is proposed the adoption of the forward speeds calculated for planar coordinates, particularly UTM coordinates, and the ellipsoid height corrected by established models depending on seasonal variations recorded in each of the stations RBMC.
14

Low-cost GPS/GLONASS Precise Positioning algorithm in Constrained Environment / Algorithme de positionnement précis en environnement contraint basé sur un récepteur bas-coût GPS/GLONASS

Carcanague, Sébastien 26 February 2013 (has links)
Le GNSS (Global Navigation Satellite System), et en particulier sa composante actuelle le système américain GPS et le système russe GLONASS, sont aujourd'hui utilisés pour des applications géodésiques afin d'obtenir un positionnement précis, de l'ordre du centimètre. Cela nécessite un certain nombre de traitements complexes, des équipements coûteux et éventuellement des compléments au sol des systèmes GPS et GLONASS. Ces applications sont aujourd'hui principalement réalisées en environnement « ouvert » et ne peuvent fonctionner en environnement plus contraint. L'augmentation croissante de l'utilisation du GNSS dans des domaines variés va voir émerger de nombreuses applications où le positionnement précis sera requis (par exemple des applications de transport/guidage automatique ou d'aide à la conduite nécessitant des performances importantes en terme de précision mais aussi en terme de confiance dans la position –l'intégrité- et de robustesse et disponibilité). D'autre part, l'arrivée sur le marché de récepteurs bas-coûts (inférieur à 100 euros) capables de poursuivre les signaux provenant de plusieurs constellations et d'en délivrer les mesures brutes laisse entrevoir des avancées importantes en termes de performance et de démocratisation de ces techniques de positionnement précis. Dans le cadre d'un utilisateur routier, l'un des enjeux du positionnement précis pour les années à venir est ainsi d'assurer sa disponibilité en tout terrain, c'est-à-dire dans le plus grand nombre d'environnements possibles, dont les environnements dégradés (végétation dense, environnement urbain, etc.) Dans ce contexte, l'objectif de la thèse a été d'élaborer et d'optimiser des algorithmes de positionnement précis (typiquement basés sur la poursuite de la phase de porteuse des signaux GNSS) afin de prendre en compte les contraintes liées à l'utilisation d'un récepteur bas coût et à l'environnement. En particulier, un logiciel de positionnement précis (RTK) capable de résoudre les ambiguïtés des mesures de phase GPS et GLONASS a été développé. La structure particulière des signaux GLONASS (FDMA) requiert notamment un traitement spécifiques des mesures de phase décrit dans la thèse afin de pouvoir isoler les ambiguïtés de phase en tant qu'entiers. Ce traitement est compliqué par l'utilisation de mesures provenant d'un récepteur bas coût dont les canaux GLONASS ne sont pas calibrés. L'utilisation d'une méthode de calibration des mesures de code et de phase décrite dans la thèse permet de réduire les biais affectant les différentes mesures GLONASS. Il est ainsi démontré que la résolution entière des ambiguïtés de phase GLONASS est possible avec un récepteur bas coût après calibration de celui-ci. La faible qualité des mesures, du fait de l'utilisation d'un récepteur bas coût en milieu dégradé est prise en compte dans le logiciel de positionnement précis en adoptant une pondération des mesures spécifique et des paramètres de validation de l'ambiguïté dépendant de l'environnement. Enfin, une méthode de résolution des sauts de cycle innovante est présentée dans la thèse, afin d'améliorer la continuité de l'estimation des ambiguïtés de phase. Les résultats de 2 campagnes de mesures effectuées sur le périphérique Toulousain et dans le centre-ville de Toulouse ont montré une précision de 1.5m 68% du temps et de 3.5m 95% du temps dans un environnement de type urbain. En milieu semi-urbain type périphérique, cette précision atteint 10cm 68% du temps et 75cm 95% du temps. Finalement, cette thèse démontre la faisabilité d'un système de positionnement précis bas-coût pour un utilisateur routier. / GNSS and particularly GPS and GLONASS systems are currently used in some geodetic applications to obtain a centimeter-level precise position. Such a level of accuracy is obtained by performing complex processing on expensive high-end receivers and antennas, and by using precise corrections. Moreover, these applications are typically performed in clear-sky environments and cannot be applied in constrained environments. The constant improvement in GNSS availability and accuracy should allow the development of various applications in which precise positioning is required, such as automatic people transportation or advanced driver assistance systems. Moreover, the recent release on the market of low-cost receivers capable of delivering raw data from multiple constellations gives a glimpse of the potential improvement and the collapse in prices of precise positioning techniques. However, one of the challenge of road user precise positioning techniques is their availability in all types of environments potentially encountered, notably constrained environments (dense tree canopy, urban environments…). This difficulty is amplified by the use of low-cost receivers and antennas, which potentially deliver lower quality measurements. In this context the goal of this PhD study was to develop a precise positioning algorithm based on code, Doppler and carrier phase measurements from a low-cost receiver, potentially in a constrained environment. In particular, a precise positioning software based on RTK algorithm is described in this PhD study. It is demonstrated that GPS and GLONASS measurements from a low-cost receivers can be used to estimate carrier phase ambiguities as integers. The lower quality of measurements is handled by appropriately weighting and masking measurements, as well as performing an efficient outlier exclusion technique. Finally, an innovative cycle slip resolution technique is proposed. Two measurements campaigns were performed to assess the performance of the proposed algorithm. A horizontal position error 95th percentile of less than 70 centimeters is reached in a beltway environment in both campaigns, whereas a 95th percentile of less than 3.5 meters is reached in urban environment. Therefore, this study demonstrates the possibility of precisely estimating the position of a road user using low-cost hardware.
15

Potencialidades de serviços on-line de Posicionamento por Ponto Preciso em aplicações geodésicas: uma análise envolvendo longo período de dados das estações da RBMC

Azambuja, José Luiz Fay de January 2015 (has links)
Um método de posicionamento por GNSS (Global Navigation Satellite System) que vem se popularizando nos últimos anos é o Posicionamento por Ponto Preciso (PPP). Este método de posicionamento se utiliza de dados de apenas um receptor e requer, fundamentalmente, o uso de efemérides e correções dos relógios dos satélites precisos. O PPP nos últimos anos ganhou um impulso significativo em sua popularidade devido, principalmente, ao surgimento de serviços gratuitos de processamento on-line. Entre estes serviços on-line de processamento de PPP, destaca-se o fornecido pelo NRCan (Natural Resource Canada), denominado CSRS-PPP (Canadian Spatial Reference System – Precise Point Positioning). Nesta Tese utilizou-se o serviço canadense CSRS-PPP no processamento de um longo período de dados superior a onze anos coletados em noventa e cinco das estações da RBMC. A análise das velocidades obtidas a partir das respectivas séries temporais referentes às coordenadas diárias estimadas pelo CSRS-PPP bem como a determinação de suas coordenadas – através do PPP – referidas à época 2000.4, mostraram resultados com pequenas discrepâncias quando comparadas com os valores oficiais adotados para as estações analisadas. O problema detectado, refere-se à impossibilidade da adoção de velocidades lineares de translação no sistema cartesiano X, Y e Z, tendo em vista que na grande maioria das estações constatou-se um comportamento sazonal referente à altura elipsoidal, variação esta que afeta as translações em X, Y e Z ao longo do ano. Como solução, propõe-se a adoção das velocidades de deslocamento calculadas para coordenadas planas, particularmente as coordenadas UTM, sendo a altura elipsoidal corrigida através de modelos estabelecidos em função da variação sazonal registrada em cada uma das estações da RBMC. / A positioning method for GNSS (Global Navigation Satellite System) that has become more popular in recent years is the Precise Point Positioning (PPP). The PPP refers to the positioning method that utilizes data to only one receiver and requires fundamentally the use of ephemeris and corrections to the precise satellite clock. The PPP in recent years gained a significant boost in its popularity, mainly due to the emergence of free services online processing. Among these PPP processing on-line services, there is the one provided by NRCan (Natural Resource Canada) called CSRS-PPP (Canadian Spatial Reference System - Precise Point Positioning). In this Thesis used if the Canadian service CSRS-PPP to process data for a long period upper through eleven collected at ninety-five of RBMC stations. The analysis of the rates obtained from the respective time series relating to the daily coordinates estimated by the CSRS-PPP and the determination of its coordinates - through PPP - said at the time 2000.4, showed results with minor discrepancies compared with the official values adopted for the analyzed stations. The problem detected, refers to the impossibility of adopting linear translation speeds in the Cartesian system X, Y, and Z, considering that in most of the stations found a seasonal pattern related to the ellipsoidal height, this variation that affects translations in X, Y and Z throughout the year. As a solution, it is proposed the adoption of the forward speeds calculated for planar coordinates, particularly UTM coordinates, and the ellipsoid height corrected by established models depending on seasonal variations recorded in each of the stations RBMC.
16

Advances in optical surface figuring by reactive atom plasma (RAP)

Castelli, Marco January 2012 (has links)
In this thesis, the research and development of a novel rapid figuring procedure for large ultra-precise optics by Reactive Atom Plasma technology is reported. The hypothesis proved in this research is that a metre scale surface with a form accuracy of ~1 μm PV can be figure corrected to 20 – 30 nm RMS in ten hours. This reduces the processing time by a factor ten with respect to state-of-the-art techniques like Ion Beam Figuring. The need for large scale ultra-precise optics has seen enormous growth in the last decade due to large scale international research programmes. A bottleneck in production is seen in the final figure correction stage. State-of-the-art processes capable of compliance with requisites of form accuracy of one part in 108 (CNC polishing, Magneto-Rheological Finishing and Ion Beam Figuring) have failed to meet the time and cost frame targets of the new optics market. Reactive Atom Plasma (RAP) is a means of plasma chemical etching that makes use of a Radio Frequency Inductively Coupled Plasma (ICP) torch operating at atmospheric pressure. It constitutes an ideal figuring alternative, combining the advantages of a non-contact tool with very high material removal rates and nanometre level repeatability. Despite the rapid figuring potential of this process, research preceding the work presented in this manuscript had made little progress towards design and implementation of a procedure for metre-class optics. The experimental work performed in this PhD project was conducted on Helios 1200, a unique large-scale RAP figuring facility at Cranfield University. Characterisation experiments were carried out on ULE and fused silica surfaces to determine optimum process parameters. Here, the influence of power, surface distance, tool speed and surface temperature was investigated. Subsequently, raster-scanning tests were performed to build an understanding on spaced multiple passes ... [cont.].
17

Velocity Variations of the Kaskawulsh Glacier, Yukon Territory, 2009-2011

Darling, Samantha January 2012 (has links)
Laser altimetry and satellite gravity surveys indicate that the St Elias Icefields are currently losing mass and are among the largest non-polar sea level contributors in the world. However, a poor understanding of glacier dynamics in the region is a major hurdle in evaluating regional variations in ice motion and the relationship between changing surface conditions and ice flux. This study combines in-situ dGPS measurements and advanced Radarsat-2 (RS-2) processing techniques to determine daily and seasonal ice velocities for the Kaskawulsh Glacier from summer 2009 to summer 2011. Three permanent dGPS stations were installed along the centreline of the glacier in 2009, with an additional permanent station on the South Arm in 2010. The Precise Point Positioning (PPP) method is used to process the dGPS data using high accuracy orbital reconstruction. RS-2 imagery was acquired on a 24-day cycle from January to March 2010, and from October to March 2010-2011 in a combination of ultra-fine and fine beam modes. Seasonal velocity regimes are readily identifiable in the dGPS results, with distinct variations in both horizontal velocity and vertical motion. The Spring Regime consists of an annual peak in horizontal velocity that corresponds closely with the onset of the melt season and progresses up-glacier, following the onset of melt at each station. The Summer Regime sees variable horizontal velocity and vertical uplift, superimposed on a long-term decline in motion. The Fall Regime sees a gradual slowing at all stations with little variation in horizontal velocity or vertical position. Rapid but short accelerations lasting up to 10 days were seen in the Winter regimes in both 2010 and 2011, occurring at various times throughout each regime. These events initiated at the Upper Station and progress down-glacier at propagation speeds up to 16,380 m day-1 and were accompanied by vertical uplift lasting for similar periods. Three velocity maps, one from the winter of 2010 and two from the fall/winter of 2011, produced from speckle tracking were validated by comparison with dGPS velocity, surface flow direction, and bedrock areas of zero motion, with an average velocity error of 2.0% and average difference in orientation of 4.3º.
18

Atomically Precise Silver Nanoclusters: Controlled Synthesis and Assembly into Structurally Diverse Frameworks with Tailored Optical Properties

Alhilaly, Mohammad Jaber 24 October 2019 (has links)
Ligand-protected metal nanoclusters (NCs), which are ultra-small nanoparticles marked by their atomic precision, are distinctly importance for contemporary nanomaterials. NCs have attracted significant research attention for utilizing their novel optical and physicochemical properties in various applications, including fluorescence sensing, catalysis, and biomedical applications. This dissertation deals with ligand-protected atomically precise silver NCs and is divided into two main parts. The first part is focused on the exploration and design of well-defined silver NCs through surface co-ligand engineering. The second part is related to the development of silver NC-based frameworks (NCFs). In the first part, we designed a synthetic strategy based on engineering the structure of the phosphine co-ligands with thiols to generate the large box-shaped [Ag67(SPhMe2)32(PPh3)8]3+ (referred to as Ag67) NC. The strategy demonstrates that the combined use of judiciously chosen thiol and phosphine co-ligands can result in stable highly anisotropic box-like shapes. The optical absorption spectrum of the Ag67 NC displays highly structured multiple sharp peaks. The crystal structure shows a Ag23 core formed of a centered cuboctahedron (an unprecedented core geometry in silver clusters), which is encased by a layer with a composition of Ag44S32P8 arranged in the shape of a box. The electronic structure of this box-shaped cluster resembles a jellium box model with 32 free electrons. In the second part, a novel approach is developed for the assembly and linkage of atomically precise Ag NCs into one-dimensional (1D) and two-dimensional (2D) NC-based frameworks (NCFs) with atomic-level control over cluster size and dimensionality. With this approach three novel, but related, crystal structures (one silver NC and two NCFs) were synthesized. These structures have the same protecting ligands, and also the same organic linker. The three structures exhibit a similar square gyrobicupola geometry of the building NC unit with only a single Ag atom difference. The critical role of using a chloride template in controlling the NC’s nuclearity was demonstrated, as well as the effect of a single Ag atom difference in the NC’s size on the NCF’s dimensionality, optical properties, and thermal stability.
19

Projekt výroby převodové skříně pro naviják / A Project for the production of the transmission case for the winch

Hrbáček, Emil January 2018 (has links)
The project elaborated within engineering studies. The project is submitting design of technology production of precise holes for rolling bearings which are located in transmission case for the winch. Variants of production technologies were designed based on the construction drawings of transmission case. Chosen type of technology is boring. Boring was performed on the CNC machine DMF 180 produced by DMG MORI. DMF 180 allows precise production of bearings holes. Via selected criteria, it was selected the better variant of two. The criteria were: cylindricality, cohesiveness, position of elements and surface quality.
20

Testování metody Precise Point Positioning / Testing of Precise Point Positioning Method

Nosek, Jakub January 2020 (has links)
This diploma thesis deals with the Precise Point Positioning (PPP) method in various variants. The thesis describes the theoretical foundations of the PPP method and the most important systematic errors that affect accuracy. The accuracy of the PPP method was evaluated using data from the permanent GNSS station CADM, which is part of the AdMaS research center. Data of the period 2018 – 2019 were processed. The results of combinations of different GNSS and the results of different observation periods were compared. Finally, the accuracy was verified at 299 IGS GNSS stations.

Page generated in 0.041 seconds