Spelling suggestions: "subject:"predator:prey interactions"" "subject:"predatorprey interactions""
1 |
Grouping behaviour as a defence against predation in whirligig beetlesEagle, Dawn Marie January 1994 (has links)
No description available.
|
2 |
RELATIONSHIP BETWEEN NEMATOCYST DISTRIBUTION AND PREY CAPTURE IN HYDROMEDUSAECorrales, Marco 27 October 2016 (has links)
We analyzed the relationship between prey capture and nematocyst distribution in the tentacles of the ambush predators, Aglantha digitale and Proboscidactyla flavicirrata, and the filter feeders, Clytia gregaria and Mitrocoma cellularia. we used video observations to compare capture locations of Artemia salina nauplii relative to the bell margin of each species. Tentacle pictures were analyzed to determine if nematocyst abundance changes along their length. By analyzing behavior and morphology simultaneously, we found that the ambush predators A. digitale and P. flavicirrata plus Sarsia tubulosa have higher nematocyst density at the tentacle tips and tend to capture more prey toward the tips. In contrast, the filter-feeders Aequorea victoria, C. gregaria and M. cellularia capture most of the prey close to the body, where they also show a slight increase in nematocyst densities.
|
3 |
Contributions and New Methods in Paleontology: Geochemical, Ultrastructural, and Microstructural Characterization of Archean, Proterozoic, and Phanerozoic FossilsSchiffbauer, James Daniel 28 May 2009 (has links)
Over the past decade, the study of organismal or systematic paleobiology has been progressing into a new age of digital paleobiology, in which advanced instrumentation is utilized for primary data collection and analyses. Having been progressing throughout this field of study, advanced instruments–commonly electron- and ion- microbeam equipment–have been employed for numerous fossils over the entire range of geologic time, from microfossils to macrofossils and from the Archean (beginning at 3800 Ma) to the Cenozoic (ending at the recent). These techniques, predominantly used for geochemical, morphological, and ultra-/micro-structural analyses, have unlocked an incredible amount of detail contributing to our understanding of fossil organisms, their modes of life, and their biological affinities. But further, as these techniques continue to grow and become popularized in various fields of paleobiological study, they are certain to significantly progress our comprehension and knowledge of the evolution of life through time.
While the chapters presented in this dissertation may not have a unifying theme in terms of a distinct fossil organism or specific time in Earth's history, furthering the use of electron- and ion- microbeam instrumentation and expanding the paleo-genres to which digital paleobiological approaches may be applied encompasses the fundamental intention of my research. Two of the chapters reported here focus on the geochemical, ultrastructural, and microstructural investigation of organic-walled microfossils, or acritarchs, from the Paleoproterozoic (2500–1600 Ma) and Mesoproterozoic (1600–1000 Ma), using a range of advanced instrumentation including field emission scanning electron microscopy, transmission electron microscopy, laser Raman spectroscopy, electron microprobe, secondary ion mass spectroscopy, and focused ion beam electron microscopy. Moving into the Neoproterozoic (1000–542 Ma), the third primary research chapter utilizes field emission scanning electron microscopy for high-resolution, high magnification imaging and quantitative evaluation of an entire fossil assemblage–from acritarchs and algal fossils to the earliest metazoan embryos. This study was conducted in an effort to examine and describe the phosphatization taphonomic window of the Doushantuo Formation of South China, which is a prime example of exceptional preservation. Finally, the fourth primary research chapter reported here uses field emission scanning electron microscopy and environmental scanning electron microscopy in a field of paleobiology in which advanced instrumentation has been highly underutilized – predatory-prey interactions. This research examines microstructural characteristics of predatory drill holes in both modern and fossil organisms in an attempt to mitigate the identification of predation traces in the fossil record. / Ph. D.
|
4 |
Prey unpredictability and unfavourable host trees influence the spatial distribution of the polyphagous predator Thanasimus formicarius (L.) (Coleoptera : Cleridae)Warzée, Nathalie 04 March 2005 (has links)
Polyphagy is a very common trait among insects. In this study, we focus on a generalist bark-beetle predator, Thanasimus formicarius (L.) (Coleoptera, Cleridae), which feeds on many scolytids in spruce, pine and broad-leaf stands. It is known to respond to the pheromones of many scolytids, among which the most harmful spruce bark beetle in Europe, Ips typographus (L.). The adults attack scolytid adults and oviposit on attacked trees where their larvae feed upon immature stages of the prey.
However, a bottom-up process limits Thanasimus formicarius’ impact on spruce bark beetles, because in most cases the bark of spruce is too thin for sheltering pupal niches and mature larvae have to leave the trees. On pine however, pupation is quite successful and reproductive success is high.
The present work estimates the advantages (complementary prey during gaps among the phenology of pine bark beetles or due to the population fluctuations of most scolytids) and constraints (landing on unsuitable host trees for the predator’s reproduction) for T. formicarius to have a wide range of prey.
Passive barrier-trappings showed that the presence and abundance of scolytid species vary strongly from year to year. So, polyphagy in T. formicarius appears as a response to fluctuating prey supplies.
This way of foraging may lead T. formicarius towards stands not always favourable for its development (for example, spruces).
At the tree level, funnels and pitfall-traps caught high numbers of third-instar T. formicarius larvae walking on the bark surface of standing spruces infested by Ips typographus (respectively 365 and 70 L3s). After feeding into the whole infested part of the trunk, these larvae are obliged to migrate outside of the galleries to favourable pupation site (e.g. the base of the trees where the bark is thicker), or even to leave the trees and search for an acceptable pupation substrate in the litter.
At the landscape level, different trapping experiments showed a correlation between catches of T. formicarius and the proportion of pines around each trap. Consequently, in a metapopulation landscape pattern, pines would act as “sources” of predators, whilst spruces are “sinks”. Indeed, Thanasimus formicarius are trapped in higher numbers in mixed stands comprising pines. This observation is also corroborated in a four-year trapping experiment in the North-East of France, following the storms of December 1999. The predator/prey ratios (T. formicarius/I. typographus) were higher in stands comprising pines than in stands without pines. The first step of a method to estimate Ips typographus infestation trends thanks to the predator/prey ratios was also developed.
|
5 |
Effects of abiotic factors on predator-prey interactions in freshwater fish communitiesHedges, Kevin James 07 December 2007 (has links)
Because differences often exist between species in their tolerances to environmental conditions, locations characterized by extreme parameter values (i.e., high temperature, low DO, high turbidity) may provide refuges from predation or competition by altering the outcome of inter-species interactions. This thesis examined the effects and relative importance of water temperature, dissolved oxygen (DO) and turbidity on habitat use by fish species and resulting changes in community composition.
The effects of abiotic factors on predator-prey interactions were tested using field surveys, laboratory experiments, field experiments and computer modeling. Field surveys were conducted in Blind Channel, Delta Marsh, Manitoba, and on Lake Winnipeg, Manitoba, to determine if small bodied forage species preferentially used high temperature, low DO or high turbidity habitats and whether predator species avoided these locations. Prey species were more abundant in these extreme locations at both small (Blind Channel) and large (Lake Winnipeg) spatial scales, but predator avoidance was only documented in Blind Channel.
The tolerances of fish species to moderate hypoxia (< 3 mg/L DO) was tested in the laboratory to verify that differences did exist among species and that the observed species distributions were not solely the effect of temperature. To quantify the potential for moderately hypoxic locations to provide a refuge from predation for small fish, a field manipulation was conducted in Blind Channel; hypoxic habitats were created without altering water temperature, decoupling the natural covariation between these two factors that occurs in aquatic systems. The abundance of small forage fish was higher in the hypoxic locations compared to controls and while predators still visited the hypoxic habitats, their mean visit duration was reduced from around 300 min to less than 1 min.
An individual based computer model was used to test and illustrate current understanding of the relative importance of temperature, DO and turbidity on predator habitat selection decisions and fish community composition. The model showed that DO had a stronger effect on community composition than temperature, and that reduced foraging success from high turbidity was able to overpower the other two factors.
Hypoxia affects habitat selection decisions by fish species and can provide refuges from predation and competition, helping maintain higher species diversity. Water temperature appears to have a weaker effect on fish distributions than DO while turbidity primarily affects visual predators, though the strength of turbidity effects depends on the magnitude and duration of individual events. / February 2008
|
6 |
Effects of abiotic factors on predator-prey interactions in freshwater fish communitiesHedges, Kevin James 07 December 2007 (has links)
Because differences often exist between species in their tolerances to environmental conditions, locations characterized by extreme parameter values (i.e., high temperature, low DO, high turbidity) may provide refuges from predation or competition by altering the outcome of inter-species interactions. This thesis examined the effects and relative importance of water temperature, dissolved oxygen (DO) and turbidity on habitat use by fish species and resulting changes in community composition.
The effects of abiotic factors on predator-prey interactions were tested using field surveys, laboratory experiments, field experiments and computer modeling. Field surveys were conducted in Blind Channel, Delta Marsh, Manitoba, and on Lake Winnipeg, Manitoba, to determine if small bodied forage species preferentially used high temperature, low DO or high turbidity habitats and whether predator species avoided these locations. Prey species were more abundant in these extreme locations at both small (Blind Channel) and large (Lake Winnipeg) spatial scales, but predator avoidance was only documented in Blind Channel.
The tolerances of fish species to moderate hypoxia (< 3 mg/L DO) was tested in the laboratory to verify that differences did exist among species and that the observed species distributions were not solely the effect of temperature. To quantify the potential for moderately hypoxic locations to provide a refuge from predation for small fish, a field manipulation was conducted in Blind Channel; hypoxic habitats were created without altering water temperature, decoupling the natural covariation between these two factors that occurs in aquatic systems. The abundance of small forage fish was higher in the hypoxic locations compared to controls and while predators still visited the hypoxic habitats, their mean visit duration was reduced from around 300 min to less than 1 min.
An individual based computer model was used to test and illustrate current understanding of the relative importance of temperature, DO and turbidity on predator habitat selection decisions and fish community composition. The model showed that DO had a stronger effect on community composition than temperature, and that reduced foraging success from high turbidity was able to overpower the other two factors.
Hypoxia affects habitat selection decisions by fish species and can provide refuges from predation and competition, helping maintain higher species diversity. Water temperature appears to have a weaker effect on fish distributions than DO while turbidity primarily affects visual predators, though the strength of turbidity effects depends on the magnitude and duration of individual events.
|
7 |
Effects of abiotic factors on predator-prey interactions in freshwater fish communitiesHedges, Kevin James 07 December 2007 (has links)
Because differences often exist between species in their tolerances to environmental conditions, locations characterized by extreme parameter values (i.e., high temperature, low DO, high turbidity) may provide refuges from predation or competition by altering the outcome of inter-species interactions. This thesis examined the effects and relative importance of water temperature, dissolved oxygen (DO) and turbidity on habitat use by fish species and resulting changes in community composition.
The effects of abiotic factors on predator-prey interactions were tested using field surveys, laboratory experiments, field experiments and computer modeling. Field surveys were conducted in Blind Channel, Delta Marsh, Manitoba, and on Lake Winnipeg, Manitoba, to determine if small bodied forage species preferentially used high temperature, low DO or high turbidity habitats and whether predator species avoided these locations. Prey species were more abundant in these extreme locations at both small (Blind Channel) and large (Lake Winnipeg) spatial scales, but predator avoidance was only documented in Blind Channel.
The tolerances of fish species to moderate hypoxia (< 3 mg/L DO) was tested in the laboratory to verify that differences did exist among species and that the observed species distributions were not solely the effect of temperature. To quantify the potential for moderately hypoxic locations to provide a refuge from predation for small fish, a field manipulation was conducted in Blind Channel; hypoxic habitats were created without altering water temperature, decoupling the natural covariation between these two factors that occurs in aquatic systems. The abundance of small forage fish was higher in the hypoxic locations compared to controls and while predators still visited the hypoxic habitats, their mean visit duration was reduced from around 300 min to less than 1 min.
An individual based computer model was used to test and illustrate current understanding of the relative importance of temperature, DO and turbidity on predator habitat selection decisions and fish community composition. The model showed that DO had a stronger effect on community composition than temperature, and that reduced foraging success from high turbidity was able to overpower the other two factors.
Hypoxia affects habitat selection decisions by fish species and can provide refuges from predation and competition, helping maintain higher species diversity. Water temperature appears to have a weaker effect on fish distributions than DO while turbidity primarily affects visual predators, though the strength of turbidity effects depends on the magnitude and duration of individual events.
|
8 |
Three-dimensional Interstitial Space Mediates Predator Foraging Success in Different Spatial ArrangementsHesterberg, Stephen Gregory 09 March 2016 (has links)
Habitat structure modifies the strength of predator-prey interactions, but it remains unclear how to describe the three-dimensional spatial arrangement of structural components in a way that consistently predicts outcomes. Interstitial space may provide a useful target for measurement, but most studies use only two-dimensional methods to describe 3D space, limiting their predictive power. Using a novel technology to produce identical components, this study tests whether the 3D interstitial space of oyster shell mimics modifies the ability of blue crabs (Callinectes sapidus) to capture their mud crab prey (Eurypanopeous depressus) in mesocosms and a variety of reef-associated predators to capture tethered mud crabs in the field. To accomplish this, individual interstices were manipulated by changing either the orientation or internal shape of 3D printed shell mimics, representing possible ways natural oyster shells differ spatially on a reef. In mesocosms, 3D interstitial space strongly affected prey survivorship in both spatial arrangements, but striking variation in the ability of individual blue crabs to consume their prey in the Shape 1 structures was notable. Field tethering experiments mostly corroborated mesocosm findings, except in the shell shape treatment. These unexpected results were likely an artifact of differences in predation between field experiments and highlight the specificity of predator-prey interactions in structured habitats. Together, these results demonstrate that the 3D interstitial space created from the spatial arrangement of structural components can mediate predator foraging success independent of the widely studied density attribute, but these outcomes are further dependent on both predator and prey identity as well as individual variation. This study also identifies a potential target for quantifying the spatial arrangement of structural components and proposes that such a measure should be three-dimensional, capture both the size and shape of an interstice, and scaled to the specific predator-prey interaction in question.
|
9 |
Acoustic and ecological investigations into predator-prey interactions between Antarctic krill (Euphausia superba) and seal and bird predatorsCox, Martin James January 2008 (has links)
1. Antarctic krill (Euphausia superba) form aggregations known as swarms that vary greatly in size and density. Six acoustic surveys were conducted as part of multidisciplinary studies at two study sites, the western and eastern core boxes (WCB and ECB), during the 1997, 1998 and 1999 austral summers, at South Georgia. A quantitative, automated, image processing algorithm was used to identify swarms, and calculate swarm descriptors, or metrics. In contrast to acoustic surveys of aggregations of other pelagic species, a strong correlation (r = 0.88, p = 0.02, 95% C.I.= 0.24 to 0.99) between the number of krill swarms and the mean areal krill density [rho.hat] was found. Multivariate analysis was used to partition swarms into three types, based on contrasting morphological and internal krill density parameters. Swarm types were distributed differently between inter-surveys and between on and off-shelf regions. This swarm type variation has implications for krill predators, by causing spatial heterogeneity in swarm detectability, suggesting that for optimal foraging to occur, predators must engage in some sort of adaptive foraging strategy. 2. Krill predator-prey interactions were found to occur at multiple spatial and temporal scales, in a nested, or hierarchical structure. At the largest inter-survey scale, an index of variability, I, was developed to compare variation in survey-scale predator sightings, sea temperature and [rho.hat]. Using I and a two-way ANOVA, core box, rather than year, was found to be a more important factor in determining species distribution. The absence of Blue-petrels (Halobaena caerulea) and the elevated number of Antarctic fur seals (Arctocephalus gazella) suggest that 1998 was a characterised by colder than average water surrounding South Georgia, and a high [rho.hat] in the ECB. At the smaller, intra-survey scales (<80 km, <5 day), the characteristic scale (distances in which predator group size, or krill density were similar, L_s) were determined. For krill and predators L_s varied by survey and the L_s of krill also varied by depth within a survey. Overlap in L_s were stronger between predator species than between a predator species and krill, indicating predators were taking foraging cues from the activity of predators, rather than from the underlying krill distribution. No relationship was found between swarm characteristics and predator activity, suggesting either there is no relationship between krill swarms and predators, or that the predator and acoustic observation techniques may not be appropriate to detect such a relationship. 3. To overcome the 2-D sampling limitations of conventional echosounders, a multibeam echosounder (MBE) observed entire swarms in three-dimensions. Swarms found in the nearshore environment of Livingston Island situated in the South Shetland Islands, exhibited only a narrow range of surface area to volume ratios or roughnesses (R = 3.3, CV = 0.23), suggesting that krill adopt a consistent group behaviour to maintain swarm shape. Generalized additive models (GAM) suggested that the presence of air-breathing predators influenced the shape of a krill swarm (R decreased in the presence of predators: the swarm became more spherical). A 2D distance sampling framework was used to estimate the abundance, N, and associated variance of krill swarms. This technique took into account angular and range detectability (half-normal, [sigma_r.hat] = 365.00 m, CV = 0.16) and determined the vertical distribution of krill swarms to be best approximated by a beta-distribution ([alpha.hat] = 2.62, [CV.hat] = 0.19; [beta.hat] = 2.41, [CV.hat] = 0.15), giving the abundance of swarms in survey region as [N.hat] = 5,062 ([CV.hat] = 0.35). This research represents a substantial contribution to developing estimation of pelagic biomass using MBEs. 4. When using a single- or split-beam missing pings occur when the transmit or receive cycles are interrupted, often by aeration of the water column, under the echosounder transducer during rough weather. A thin-plate regression spline based approach was used to model the missing krill data, with knots chosen using a branch and bound algorithm. This method performs well for acoustic observations of krill swarms where data are tightly clustered and change rapidly. For these data the technique outperformed the standard MGCV GAM, and the technique is applicable for estimating acoustically derived biomass from line transect surveys.
|
10 |
Variable Consequences of Toxic Prey on Generalist Insect PredatorsJackson, Kelly 01 January 2016 (has links)
Introduced species, like the lady beetle Harmonia axyridis, have been linked to declines of native species through mechanisms including intraguild predation and competitive superiority. However, competitive differentials between species may be mitigated if subdominant species can utilize resources that dominant species cannot. Previous research has shown that some strains of the aphid Aphis craccivora are toxic to H. axyridis. My goal was to investigate use of this resource by both H. axyridis and other lady beetles, to determine whether these aphids might be an exploitable resource for subdominant lady beetle species. I first examined the behavioral responses of adult and larval H. axyridis to toxic strains of A. craccivora. I found that adults invested less time and laid fewer eggs with toxic than nontoxic aphids, and larvae consumed toxic aphids at a slower rate, often refusing them as a food source. I then tested whether six other lady beetle species could use the aphids, monitoring larval development in no-choice environments with different strains of A. craccivora. All species showed increased survival and development rates relative to H. axyridis on toxic aphid strains, suggesting these aphids may allow other coccinellid species to experience competitive release from the otherwise dominant H. axyridis.
|
Page generated in 0.1494 seconds