• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O uso de rede neural artificial MLP na predição de estruturas secundárias de proteínas

Ferreira, Fausto Roberto [UNESP] 23 June 2004 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2004-06-23Bitstream added on 2014-06-13T18:49:49Z : No. of bitstreams: 1 ferreira_fr_me_sjrp.pdf: 884938 bytes, checksum: cb71cfbd072d7a80c82fa5ec84776eea (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A predição de estruturas secundárias e terciárias pode contribuir para elucidar o problema de enovelamento de proteínas. Para isso, métodos de Redes Neurais Artificiais (RNAs) e Algoritmos Genéticos são utilizados a fim de predizê-las, a partir de determinadas seqüências primárias de aminoácidos. Neste sentido, esta pesquisa visa à utilização de três níveis de RNAs. O primeiro nível é composto por um vetor de entrada representando a seqüência primaria dos aminoácidos, com uma dimensão de 22.n, onde n é o tamanho da janela compreendida entre 7 a 23. O segundo nível possui a implementação dos resultados da primeira rede. Por fim o terceiro nível é composto por um júri de decisão. As RNAs são treinadas no Simulador MATLAB 5.0, um software composto de vários recursos para a sua implementação (Neural Network Toolbox). As RNAs implementadas são do tipo Multi Layer Perceptron (MLP), que utilizam o algoritmo backpropagation (RPROP) e a função de treinamento trainrp. Os dados obtidos são comparados com os preditores 'The Predict Protein Server Default' (www.emblheidelberg.de/predictprotein/submit_def.html), 'The PSA Protein Structure Prediction Server' (http//bmerc-www.bu.edu/psa/request.html) e 'The PSIPRED Protein Structure Prediction Server' (http://bioinf.cs.ucl.ac.uk/psipred/), a fim de se obter um modelo de predição. / The prediction of (secondaray and tertiary) structures of proteins can contribute to elucidadate the protein-folding problem. In oder to predict these structures we used methods of Artificial Neural Network (ANN) and genetic algorithms starting from the primary sequences of amino acids. The present work is composed of 3 networks levels. The first level is composed of ANNs of an input vector representing a segment of primary amino acid sequence. Since the encoding scheme uses a local window into the sequence, the input vector is a 22.n dimensional vector where n is the number of positions in the window (between 7 and 23). The outputs of level 1 are the inputs of the second level ANNs. The third level is the jury decision. The ANNs were trained with the Simulator MATLAB 5.0, software with several tools for its implementation (Neural Network Toolbox). The implemented ANNs are Multi Layer Perceptron (MLP) kind, which use the backpropagation algorithms (RPROP) together with training function trainrp. The obtained date are compared with the predictors 'The Predict Protein Server Default' (www.emblheidelberg.de/predictprotein/submit_def.html), 'The PSA Protein Structure Prediction Server' (http//bmerc-www.bu.edu/psa/request.html) e 'The PSIPRED Protein Structure Prediction Server' (http://bioinf.cs.ucl.ac.uk/psipred/) in order to heve an idea of the quality of the prediction.
2

Redes neurais residuais profundas e autômatos celulares como modelos para predição que fornecem informação sobre a formação de estruturas secundárias proteicas / Residual neural networks and cellular automata as protein secondary structure prediction models with information about folding

Pereira, José Geraldo de Carvalho 15 March 2018 (has links)
O processo de auto-organização da estrutura proteica a partir da cadeia de aminoácidos é conhecido como enovelamento. Apesar de conhecermos a estrutura tridimencional de muitas proteínas, para a maioria delas, não possuímos uma compreensão suficiente para descrever em detalhes como a estrutura se organiza a partir da sequência de aminoácidos. É bem conhecido que a formação de núcleos de estruturas locais, conhecida como estrutura secundária, apresenta papel fundamental no enovelamento final da proteína. Desta forma, o desenvolvimento de métodos que permitam não somente predizer a estrutura secundária adotada por um dado resíduo, mas também, a maneira como esse processo deve ocorrer ao longo do tempo é muito relevante em várias áreas da biologia estrutural. Neste trabalho, desenvolvemos dois métodos de predição de estruturas secundárias utilizando modelos com o potencial de fornecer informações mais detalhadas sobre o processo de predição. Um desses modelos foi construído utilizando autômatos celulares, um tipo de modelo dinâmico onde é possível obtermos informações espaciais e temporais. O outro modelo foi desenvolvido utilizando redes neurais residuais profundas. Com este modelo é possível extrair informações espaciais e probabilísticas de suas múltiplas camadas internas de convolução, o que parece refletir, em algum sentido, os estados de formação da estrutura secundária durante o enovelamento. A acurácia da predição obtida por esse modelo foi de ~78% para os resíduos que apresentaram consenso na estrutura atribuída pelos métodos DSSP, STRIDE, KAKSI e PROSS. Tal acurácia, apesar de inferior à obtida pelo PSIPRED, o qual utiliza matrizes PSSM como entrada, é superior à obtida por outros métodos que realizam a predição de estruturas secundárias diretamente a partir da sequência de aminoácidos. / The process of self-organization of the protein structure is known as folding. Although we know the structure of many proteins, for a majority of them, we do not have enough understanding to describe in details how the structure is organized from its amino acid sequence. In this work, we developed two methods for secondary structure prediction using models that have the potential to provide detailed information about the prediction process. One of these models was constructed using cellular automata, a type of dynamic model where it is possible to obtain spatial and temporal information. The other model was developed using deep residual neural networks. With this model it is possible to extract spatial and probabilistic information from its multiple internal layers of convolution. The accuracy of the prediction obtained by this model was ~ 78% for residues that showed consensus in the structure assigned by the DSSP, STRIDE, KAKSI and PROSS methods. Such value is higher than that obtained by other methods which perform the prediction of secondary structures from the amino acid sequence only.
3

Redes neurais residuais profundas e autômatos celulares como modelos para predição que fornecem informação sobre a formação de estruturas secundárias proteicas / Residual neural networks and cellular automata as protein secondary structure prediction models with information about folding

José Geraldo de Carvalho Pereira 15 March 2018 (has links)
O processo de auto-organização da estrutura proteica a partir da cadeia de aminoácidos é conhecido como enovelamento. Apesar de conhecermos a estrutura tridimencional de muitas proteínas, para a maioria delas, não possuímos uma compreensão suficiente para descrever em detalhes como a estrutura se organiza a partir da sequência de aminoácidos. É bem conhecido que a formação de núcleos de estruturas locais, conhecida como estrutura secundária, apresenta papel fundamental no enovelamento final da proteína. Desta forma, o desenvolvimento de métodos que permitam não somente predizer a estrutura secundária adotada por um dado resíduo, mas também, a maneira como esse processo deve ocorrer ao longo do tempo é muito relevante em várias áreas da biologia estrutural. Neste trabalho, desenvolvemos dois métodos de predição de estruturas secundárias utilizando modelos com o potencial de fornecer informações mais detalhadas sobre o processo de predição. Um desses modelos foi construído utilizando autômatos celulares, um tipo de modelo dinâmico onde é possível obtermos informações espaciais e temporais. O outro modelo foi desenvolvido utilizando redes neurais residuais profundas. Com este modelo é possível extrair informações espaciais e probabilísticas de suas múltiplas camadas internas de convolução, o que parece refletir, em algum sentido, os estados de formação da estrutura secundária durante o enovelamento. A acurácia da predição obtida por esse modelo foi de ~78% para os resíduos que apresentaram consenso na estrutura atribuída pelos métodos DSSP, STRIDE, KAKSI e PROSS. Tal acurácia, apesar de inferior à obtida pelo PSIPRED, o qual utiliza matrizes PSSM como entrada, é superior à obtida por outros métodos que realizam a predição de estruturas secundárias diretamente a partir da sequência de aminoácidos. / The process of self-organization of the protein structure is known as folding. Although we know the structure of many proteins, for a majority of them, we do not have enough understanding to describe in details how the structure is organized from its amino acid sequence. In this work, we developed two methods for secondary structure prediction using models that have the potential to provide detailed information about the prediction process. One of these models was constructed using cellular automata, a type of dynamic model where it is possible to obtain spatial and temporal information. The other model was developed using deep residual neural networks. With this model it is possible to extract spatial and probabilistic information from its multiple internal layers of convolution. The accuracy of the prediction obtained by this model was ~ 78% for residues that showed consensus in the structure assigned by the DSSP, STRIDE, KAKSI and PROSS methods. Such value is higher than that obtained by other methods which perform the prediction of secondary structures from the amino acid sequence only.

Page generated in 0.0585 seconds