Spelling suggestions: "subject:"aprediction models"" "subject:"iprediction models""
91 |
Řízení zásobní funkce nádrže s využitím metod umělé inteligence / Management of water reservoir storage function using methods of artificial intelligenceUrbanec, Patrik January 2020 (has links)
The subject of this thesis is to control the storage function of the reservoir using artificial intelligence methods, including the construction of the appropriate control algorithm. The thesis is divided into the theoretical part and the part of the application of reservoir storage function control. The theoretical part describes the control algorithm and the prediction model. The following are basic optimization methods and artificial intelligence methods. The second part presents the historical data used for the prediction model. The following is a description of calibration and validation of the control module and evaluation of the application results. Finally, there is a comparison and summary of individual results, control algorithm and prediction model. According to the results, the control algorithm can be recommended for further investigation.
|
92 |
Regional Rainfall Frequency AnalysisRudberg, Olov, Bezaatpour, Daniel January 2020 (has links)
Frequency analysis is a vital tool when nding a well-suited probability distributionin order to predict extreme rainfall. The regional frequency approach have beenused for determination of homogeneous regions, using 11 sites in Skane, Sweden. Todescribe maximum annual daily rainfall, the Generalized Logistic (GLO), GeneralizedExtreme Value (GEV), Generalized Normal (GNO), Pearson Type III (PE3),and Generalized Pareto (GPA) distributions have been considered. The method ofL-moments have been used in order to nd parameter estimates for the candidatedistributions. Heterogeneity measures, goodness-of-t tests, and accuracy measureshave been executed in order to accurately estimate quantiles for 1-, 5-, 10-, 50- and100-year return periods. It was found that the whole province of Skane could beconsidered as homogeneous. The GEV distribution was the most consistent withthe data followed by the GNO distribution and they were both used in order toestimate quantiles for the return periods. The GEV distribution generated the mostprecise estimates with the lowest relative RMSE, hence, it was concluded to be thebest-t distribution for maximum annual daily rainfall in the province.
|
93 |
A novel Bayesian hierarchical model for road safety hotspot predictionFawcett, Lee, Thorpe, Neil, Matthews, Joseph, Kremer, Karsten 30 September 2020 (has links)
In this paper, we propose a Bayesian hierarchical model for predicting accident counts in future years at sites within a pool of potential road safety hotspots. The aim is to inform road safety practitioners of the location of likely future hotspots to enable a proactive, rather than reactive, approach to road safety scheme implementation. A feature of our model is the ability to rank sites according to their potential to exceed, in some future time period, a threshold accident count which may be used as a criterion for scheme implementation. Our model specification enables the classical empirical Bayes formulation – commonly used in before-and-after studies, wherein accident counts from a single before period are used to estimate counterfactual counts in the after period – to be extended to incorporate counts from multiple time periods. This allows site-specific variations in historical accident counts (e.g. locally-observed trends) to offset estimates of safety generated by a global accident prediction model (APM), which itself is used to help account for the effects of global trend and regression-to-mean (RTM). The Bayesian posterior predictive distribution is exploited to formulate predictions and to properly quantify our uncertainty in these predictions. The main contributions of our model include (i) the ability to allow accident counts from multiple time-points to inform predictions, with counts in more recent years lending more weight to predictions than counts from time-points further in the past; (ii) where appropriate, the ability to offset global estimates of trend by variations in accident counts observed locally, at a site-specific level; and (iii) the ability to account for unknown/unobserved site-specific factors which may affect accident counts. We illustrate our model with an application to accident counts at 734 potential hotspots in the German city of Halle; we also propose some simple diagnostics to validate the predictive capability of our model. We conclude that our model accurately predicts future accident counts, with point estimates from the predictive distribution matching observed counts extremely well.
|
94 |
Federated DeepONet for Electricity Demand Forecasting: A Decentralized Privacy-preserving ApproachZilin Xu (11819582) 02 May 2023 (has links)
<p>Electric load forecasting is a critical tool for power system planning and the creation of sustainable energy systems. Precise and reliable load forecasting enables power system operators to make informed decisions regarding power generation and transmission, optimize energy efficiency, and reduce operational costs and extra power generation costs, to further reduce environment-related issues. However, achieving desirable forecasting performance remains challenging due to the irregular, nonstationary, nonlinear, and noisy nature of the observed data under unprecedented events. In recent years, deep learning and other artificial intelligence techniques have emerged as promising approaches for load forecasting. These techniques have the ability to capture complex patterns and relationships in the data and adapt to changing conditions, thereby enhancing forecasting accuracy. As such, the use of deep learning and other artificial intelligence techniques in load forecasting has become an increasingly popular research topic in the field of power systems. </p>
<p>Although deep learning techniques have advanced load forecasting, the field still requires more accurate and efficient models. One promising approach is federated learning, which allows for distributed data analysis without exchanging data among multiple devices or cen- ters. This method is particularly relevant for load forecasting, where each power station’s data is sensitive and must be protected. In this study, a proposed approach utilizing Federated Deeponet for seven different power stations is introduced, which proposes a Federated Deep Operator Networks and a Lagevin Dynamics-based Federated Deep Operator Networks using Stochastic Gradient Langevin Dynamics as the optimizer for training the data daily for one-day and predicting for one-day frequencies by frequencies. The data evaluation methods include mean absolute percentage error and the percentage coverage under confidence interval. The findings demonstrate the potential of federated learning for secure and precise load forecasting, while also highlighting the challenges and opportunities of implementing this approach in real-world scenarios. </p>
|
95 |
Development and validation of clinical prediction models to diagnose acute respiratory infections in children and adults from Canadian Hutterite communities.Vuichard Gysin, Danielle January 2016 (has links)
Acute respiratory infections (ARI) caused by influenza and other respiratory viruses affect millions of people annually. Although usually self-limiting a more complicated or severe course may occur in previously healthy people but are more likely in individuals with underlying illnesses. The most common viral agent is rhinovirus whereas influenza is less frequent but is well known to cause winter epidemics. In primary care, rapid diagnosis of influenza virus infections is essential in order to provide treatment. Clinical presentations vary among the different pathogens but may overlap and may also depend on host factors. Predictive models have been developed for influenza but study results may be biased because only individuals presenting with fever were included. Most of these models have not been adequately validated and their predictive power, therefore, is likely overestimated. The main objective of this thesis was to compare different mathematical models for the
derivation of clinical prediction rules in individuals presenting with symptoms of ARI to better distinguish between influenza, influenza A subtypes and entero-/rhinovirus-related illness in children and adults and to evaluate model performance by using data-splitting for internal validation.
Data from a completed prospective cluster-randomized trial for the indirect effect of influenza vaccination in children of Hutterite communities served as a basis of my thesis. There were a total of 3288 first episodes per season of ARI in 2202 individuals and 321 (9.8%) influenza positive events over three influenza seasons (2008-2011). The data set was divided into children under 18 years and adults. Both data sets were randomly split by subjects into a derivation (2/3 of the dataset) and a validation population (1/3 of the dataset). All predictive models were developed in the derivation sets. Demographic factors and the classical symptoms of ARI were evaluated with logistic regression and Cox proportional hazard models using forward stepwise selection applying robust estimators to account for non-independent data and by means of recursive partitioning. The beta coefficients of the independent predictors were used to develop different point scores. These scores were then tested in the validation groups and performance between validation and derivation set was compared using receiver operating characteristics (ROC) curves. We determined sensitivities and specificities, positive and negative predictive values, and likelihood ratios at different cut-points which could reflect test and treatment thresholds. Fever, chills, and cough were the most important predictors in children whereas chills and cough but not fever were most predictive of influenza virus infection in adults. Performance of the individual models was moderate with areas under the receiver operating characteristic curves between 0.75 and 0.80 for the main outcome influenza A or B virus infection. There was no statistically significant difference in performance between the derivation and validation sets for the main outcome. The results have shown, that various mathematical models have similar discriminative ability to
distinguish influenza from other respiratory viruses. The scores could assist clinicians in their decision-making. However, performance of the models was slightly overestimated due to potential clustering of data and the results would first needed to be validated in a different population before application in clinical practice. / Thesis / Master of Science (MSc) / Every year, millions of people are attacked by "the flu" or the common cold. Certain signs and symptoms apparently are more discriminative between the common cold and the flu. However, the decision between starting a simple symptom orientated treatment, treating empirically for influenza or ordering a rapid diagnostic test that has only moderate sensitivity and specificity can be challenging.
This thesis, therefore, aims to help physicians in their decision-making process by developing simple scores and decision trees for the diagnosis of influenza versus non-influenza respiratory infections.
Data from a completed trial for the indirect effect of influenza vaccination in children of Hutterite communities served as a basis of my thesis. There were a total of 3288 first seasonal episodes of ARI in 2202 individuals and 321 (9.8%) influenza positive events over three influenza seasons (2008-2011). The data set was divided into children under 18 years and adults. Both data sets were split into a derivation and a validation set (=holdout group). Different mathematical models were applied to the derivation set and demographic factors as well as the classical symptoms of ARI were evaluated. The scores generated from the most important factors that remained in the model were then tested in the validation group and performance between validation and derivation set was compared. Accuracy was determined at different cut-points which could reflect test and treatment thresholds. Fever, chills, and cough were the most important predictors in children whereas chills and cough but not fever were most predictive of influenza virus infection in adults. Performance of the individual models was moderate for the main outcome influenza A or B virus infection. There was no statistically significant difference in performance between the derivation and validation sets for the main outcome. The results have shown, that various mathematical models have similar discriminative ability to distinguish influenza from other respiratory viruses. The scores could assist clinicians in their decision-making. However, the results would first needed to be validated in a different population before application in clinical practice.
|
96 |
NOVEL REPAIR MATERIAL SELECTION METHODOLOGY FORCONCRETE STRUCTURES AND RELATED LONG - TERM PERFORMANCEPREDICTION MODELKiani, Behnam January 2017 (has links)
No description available.
|
97 |
ADDRESSING DATA IMBALANCE IN BREAST CANCER PREDICTION USING SUPERVISED MACHINE LEARNINGShuning Yin (13169550) 28 July 2022 (has links)
<p>Every 12 minutes, 12 women are diagnosed with breast cancer in the US, and 1 dies out of it. Globally, every 46 seconds, a woman loses her life due to breast cancer, meaning more than 1,800 deaths every day. The condition makes the prediction of breast cancer very important. To achieve the goal, supervised machine learning (ML) methods are used for breast cancer likelihood predictions. However, due to imbalance in the real-world data with very low portion of positive cases, the prediction accuracy of ML models for positive cancer cases was limited. Two procedures were done to address the issues in the study. Firstly, four supervised ML models, including Naïve Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), using WEKA, the industry-standard software, were applied to the Breast Cancer Surveillance Consortium (BCSC) dataset to assess the impact of the data imbalance on breast cancer prediction. Secondly, the data was manually built as balanced (24,558 cases, 12,279 for each class-positive and negative) and unbalanced (99,000 cases for negative) training datasets and a non-overlapping testing dataset (11,000 cases) based on the same dataset and a decision support system was developed for two ML models, NB and LR to tackle the class imbalance issue for breast cancer prediction. Overall, the results indicate that MLP had the best performance on positive breast cancer prediction with 0.959 sensitivity and 0.907 PPV and balanced dataset predicted better results for all ML models than unbalanced dataset. Furthermore, the proposed method improved the sensitivity of positive cancer case prediction from 0.687 to 0.936 using the NB model and from 0.358 to 0.8306 using the LR model. The improvement demonstrated that the approach provided higher confidence ML-based predictions and filtered weaker ones, and the technique could efficiently address the class imbalance issue in breast cancer likelihood prediction and be used in clinical practice.</p>
|
98 |
Zur Ermittlung von Parametern der Bodenbewegungsvorausberechnung über KavernenfeldernSodmann, Marcel, Benndorf, Jörg 16 July 2019 (has links)
Im Beitrag werden zwei alternative Methoden zur inversen Schätzung der Parameter für Bodenbewegungsvorausberechnungsmodelle aus Messdaten zu Höhenänderungen an Höhenfestpunkten gegenübergestellt, ein Ansatz unter Nutzung der Ausgleichungsrechnung sowie ein Bayes’scher Ansatz unter Nutzung der Monte-Carlo-Simulation. Der Vergleich erfolgt im Kontext eines Kavernenfeldes. Es wird gezeigt, dass durch beide Verfahren aus Höhenbeobachtungen an der Tagesoberfläche die Parameter Hohlraumkonvergenz und Einwirkungswinkel signifikant präzisiert werden können, was zu verbesserten Vorhersagen führt. Im Ergebnis der Studie lassen sich Möglichkeiten ableiten, das Messnetz zu optimieren. / The paper compares two alternative methods for inverse estimation of the parameters for ground movement prediction models from elevation change measurements at fixed levelling points, an approach using the geodetic adjustment theory and a Bayesian approach using Monte-Carlo simulation. The comparison is performed in the setting of a cavern field. It is shown that both methods allow utilizing elevation-change observations on the surface to significantly improve the prediction of the parameters convergence and angle of influence. Such an approach will lead to improved predictions. As a result of the study, opportunities for optimizing the elevation measurement network can be lifted.
|
99 |
Safety Evaluation of Active Traffic Management Strategies on Freeways by Short-Term Crash Prediction ModelsHasan, Md Tarek 01 January 2023 (has links) (PDF)
Traditional crash frequency prediction models cannot capture the temporal effects of traffic characteristics due to the high level of data aggregation. Also, this approach is less suitable to address the crash risk for active traffic management strategies that typically operate for short-time intervals. Hence, this research proposes short-term crash prediction models for traffic management strategies such as Variable Speed Limit (VSL)/Variable Advisory Speed (VAS), and Part-time Shoulder Use (PTSU). By using high-resolution traffic detectors and VSL/VAS operational data, short-term Safety Performance Functions (SPFs) are estimated at weekday hourly and peak period aggregation levels. The results indicate that the short-term SPFs could capture various crash contributing factors and safety aspects of VSL/VAS more effectively than the traditional highly aggregated Average Annual Daily Traffic (AADT)-based approach. The study also investigates the safety effectiveness of VSL/VAS for different types and severity levels of traffic crashes. The results specify that the VSL/VAS system is effective in reducing rear-end crashes in the Multivariate Poisson Lognormal (MVPLN) crash type model as well as Property Damage Only (PDO) and C (non-incapacitating) crashes in the MVPLN crash severity model. Recommendations include deploying the VSL/VAS system combined with other traffic management strategies, strong enforcement policies, and drivers' compliance to increase the effectiveness of this strategy. Further, this research estimates the Random Parameters Negative Binomial-Lindley (RPNB-L) model for PTSU sections and provides valuable insights on potential crash contributing factors related to PTSU operation, design elements, and high-risk areas. Last, the study proposes a novel integrated crash prediction approach for freeway sections with combined traffic management strategies. By incorporating historical safety conditions from SPFs, real-time crash prediction performance could be improved as a part of proactive traffic management systems. The findings could assist transportation agencies, policymakers, and practitioners in taking appropriate countermeasures for preventing and reducing crash occurrence by incorporating safety aspects while implementing traffic management strategies on freeways.
|
100 |
Finanční analýza firmy Pragis a.s./Financial Analysis of Pragis Company / Financial Analysis of Company Pragis a.s.Gabrielová, Andrea January 2010 (has links)
The thesis is focused on financial analysis of the building company PRAGIS a.s. This thesis contains the theoretical and practical part. The theoretical part deals with the methods of financial analysis. The practical part focuses on the application of selected methods for financial analysis of the company PRAGIS a.s. between years 2005 and 2010.
|
Page generated in 0.0729 seconds