Spelling suggestions: "subject:"predictive design"" "subject:"redictive design""
1 |
A design-build-test-learn tool for synthetic biologyAppleton, Evan M. 12 February 2016 (has links)
Modern synthetic gene regulatory networks emerge from iterative design-build-test cycles that encompass the decisions and actions necessary to design, build, and test target genetic systems. Historically, such cycles have been performed manually, with limited formal problem-definition and progress-tracking. In recent years, researchers have devoted substantial effort to define and automate many sub-problems of these cycles and create systems for data management and documentation that result in useful tools for solving portions of certain workflows. However, biologists generally must still manually transfer information between tools, a process that frequently results in information loss. Furthermore, since each tool applies to a different workflow, tools often will not fit together in a closed-loop and, typically, additional outstanding sub-problems still require manual solutions. This thesis describes an attempt to create a tool that harnesses many smaller tools to automate a fully closed-loop decision-making process to design, build, and test synthetic biology networks and use the outcomes to inform redesigns. This tool, called Phoenix, inputs a performance-constrained signal-temporal-logic (STL) equation and an abstract genetic-element structural description to specify a design and then returns iterative sets of building and testing instructions. The user executes the instructions and returns the data to Phoenix, which then processes it and uses it to parameterize models for simulation of the behavior of compositional designs. A model-checking algorithm then evaluates these simulations, and returns to the user a new set of instructions for building and testing the next set of constructs. In cases where experimental results disagree with simulations, Phoenix uses grammars to determine where likely points of design failure might have occurred and instructs the building and testing of an intermediate composition to test where failures occurred. A design tree represents the design hierarchy displayed in the user interface where progress can be tracked and electronic datasheets generated to review results. Users can validate the computations performed by Phoenix by using them to create sets of classic and novel temporal synthetic genetic regulatory functions in E. coli. / 2016-12-31T00:00:00Z
|
2 |
Description des facteurs prédictifs de résultats d’une intervention de prévention et de gestion des maladies chroniques en contexte de soins première ligne / Describing the predictive factors of effects of an interdisciplinary intervention for people with chronic conditions in primary healthcareSasseville, Maxime January 2014 (has links)
Résumé : Objectif : Identifier les facteurs associés avec le succès d’une intervention multidisciplinaire de prise en charge et de prévention des maladies chroniques dans un contexte de soins de santé de première ligne. Devis : Étude corrélationnelle prédictive d’analyse secondaire des données du projet PR1MaC, un essai randomisé contrôlé analysant les effets d’une intervention intégrant un programme de prise en charge et de prévention Contexte : Huit cliniques de soins de première ligne de la région Saguenay-Lac-Saint-Jean. Participants : un échantillon de 160 patients (52,5% d’hommes) référés par des professionnels de première ligne. L’analyse a porté sur le groupe intervention seulement. Mesure de résultats primaire : Mesure d’amélioration significative dans les huit domaines du «Health Education Impact Questionnaire».
Résultat : L’analyse de régression multivariée a démontré qu’être plus jeune, être célibataire et avoir un salaire plus bas a mené à plus d’amélioration au niveau du domaine « Bien-être émotionnel »; avoir de bonnes habitudes alimentaires et cibler moins de facteurs de risque durant l’intervention a mené à plus d’amélioration au niveau du domaine « Approches et attitudes constructives »; être plus jeune, avoir plus de temps de contact avec les professionnels et avoir une concertation des professionnels a mené à plus d’amélioration dans le domaine « Approches et attitudes constructives »; avoir plus de temps de contact avec les professionnels a aussi eu une influence sur l’amélioration du domaine « Engagement positif et actif dans la vie » et avoir un plus grand nombre de professionnels intervenant chez une même personne a démontré plus d’amélioration dans le domaine « Acquisition des techniques et habiletés ». Aucun facteur prédictif n’a pu être identifié pour les domaines « Comportements de santé », « Intégration sociale et soutien » et « Auto-surveillance et discernement ». Seulement les résultats statistiquement significatifs sont présentés (valeur p ≥ 0,05). La petite taille de l'échantillon ainsi que la possibilité d'une perte de signification des résultats après certains ajustements statistiques suggèrent que ces observations devraient faire l'objet d'une validation plus approfondie dans d'autres études. Conclusion : La tentative d’identification des facteurs prédictifs de résultats de cette recherche contribue à la compréhension des mécanismes complexes de l’efficacité et offre des pistes quant à l’optimisation des programmes de prévention et de gestion des maladies chroniques. // Abstract : Context : Research on the factors associated with the successes of chronic disease prevention and management (CDPM) interventions is scarce. Objectives : To identify the factors associated with the successes of an interprofessional CDPM intervention among adult patients in primary healthcare (PHC) settings. Design : Secondary analysis of data from the PR1MaC project; a pragmatic randomized controlled trial looking at the effects of an intervention involving the integration of CDPM services in PHC. Settings : Eight PHC practices in the Saguenay - Lac - Saint - Jean region of Quebec, Canada. Participants : A sample of 160 patients (84 males) referred by PHC providers constituted the sample (mean age 52.66 ± 11.5 years); 98.5% presented two or more chronic conditions analysis focused on the intervention arm sample only. Main and secondary outcome measures : Dichotomic substantive improvement in the eight domains of the Health Education Impact questionnaire (hei Q) measured at baseline and three months later. Results : Multivariate logistic regression analysis showed that being younger, being single and having a lower family income led to a better improvement in the emotional wellbeing domain; having healthy eating habits and less objectives during the intervention led to improvement in the constructive attitudes and approaches domain; being younger, a longer intervention and a consensus of professionals led to improvement in the health services navigation domain; a longer intervention led to improvement in the positive and active engagement in life domain and having more professionals involved led to improvement in the Skills and techniques acquisition domain. No predictive factors were identified for the Health - directed behaviour, Social interaction and support and S elf - monitoring and insight domains. Only significant results are presented here (p - value ≥ 0.05). The small sample and the lost of significance after statistical adjustments suggest that observations should be validated by other studies. Conclusion: In an attempt to make causal inferences in regards to improvement, this research contributes to the understanding of the complex mechanisms of efficiency and provides information about the optimisation of CDPM program delivery.
|
Page generated in 0.0723 seconds