• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 219
  • 98
  • 58
  • 30
  • 18
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 497
  • 464
  • 94
  • 88
  • 81
  • 79
  • 77
  • 75
  • 73
  • 61
  • 61
  • 50
  • 49
  • 48
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Dynamic Functional Capacity Theory: Music Evoked Emotions

Klineburger, Philip C. 04 December 2014 (has links)
The music-evoked emotion literature implicates many brain regions involved in emotional processing but is currently lacking a model that specifically explains how they temporally and dynamically interact to produce intensely pleasurable emotions. A conceptual model, The Dynamic Functional Capacity Theory (DFCT), is proposed that provides a foundation for the further understanding of how brain regions interact to produce intense intensely pleasurable emotions. The DFCT claims that brain regions mediating emotion and arousal regulation have a limited functional capacity that can be exceeded by intense stimuli. The prefrontal cortex is hypothesized to abruptly deactivate when this happens, resulting in the inhibitory release of sensory cortices, the limbic system, the reward-circuit, and the brainstem reticular activating system, causing 'unbridled' activation of these areas. This process produces extremely intense emotions. This theory may provide music-evoked emotion researchers and Music Therapy researchers a theoretical foundation for continued research and application and also to compliment current theories of emotion. / Ph. D.
12

Effects of aging on functions of the prefrontal cortex

Fox, Geoffrey Arthur. January 2004 (has links)
Thesis (Ph.D.)--University of Wollongong, 2004. / Typescript. Includes bibliographical references: leaf 130-154.
13

The effects of lesions in the ventromedial prefrontal cortex and related areas on emotional responses to cigarette smoking

Naqvi, Nasir Hasnain. January 2007 (has links)
Thesis (PH. D.)--University of Iowa, 2007. / Supervisor: Antoine Bechara. Includes bibliographical references (leaves 174-195).
14

The Influence of Estrogen and Progesterone on Prefrontal Cortex Functions and Working Memory in Women

Grigorova, Miglena January 2005 (has links)
Note:
15

Cortisol, cognition and the ageing prefrontal cortex

Cox, Simon Riddington January 2013 (has links)
The structural and functional decline of the ageing human brain varies by brain region, cognitive function and individual. The underlying biological mechanisms are poorly understood. One potentially important mechanism is exposure to glucocorticoids (GCs; cortisol in humans); GC production is increasingly varied with age in humans, and chronic exposure to high levels is hypothesised to result in cognitive decline via cerebral remodelling. However, studies of GC exposure in humans are scarce and methodological differences confound cross-study comparison. Furthermore, there has been little focus on the effects of GCs on the frontal lobes and key white matter tracts in the ageing brain. This thesis therefore examines relationships among cortisol levels, structural brain measures and cognitive performance in 90 healthy, elderly community-dwelling males from the Lothian Birth Cohort 1936. Salivary cortisol samples characterised diurnal (morning and evening) and reactive profiles (before and after a cognitive test battery). Structural variables comprised Diffusion Tensor Imaging measures of major brain tracts and a novel manual parcellation method for the frontal lobes. The latter was based on a systematic review of current manual methods in the context of putative function and cytoarchitecture. Manual frontal lobe brain parcellation conferred greater spatial and volumetric accuracy when compared to both single- and multi-atlas parcellation at the lobar level. Cognitive ability was assessed via tests of general cognitive ability, and neuropsychological tests thought to show differential sensitivity to the integrity of frontal lobe sub-regions. The majority of, but not all frontal lobe test scores shared considerable overlap with general cognitive ability, and cognitive scores correlated most consistently with the volumes of the anterior cingulate. This is discussed in light of the diverse connective profile of the cingulate and a need to integrate information over more diffuse cognitive networks according to proposed de-differentiation or compensation in ageing. Individuals with higher morning, evening or pre-test cortisol levels showed consistently negative relationships with specific regional volumes and tract integrity. Participants whose cortisol levels increased between the start and end of cognitive testing showed selectively larger regional volumes and lower tract diffusivity (correlation magnitudes <.44). The significant relationships between cortisol levels and cognition indicated that flatter diurnal slopes or higher pre-test levels related to poorer test performance. In contrast, higher levels in the morning generally correlated with better scores (correlation magnitudes <.25). Interpretation of all findings was moderated by sensitivity to type I error, given the large number of comparisons conducted. Though there were limited candidates for mediation analysis, cortisol-function relationships were partially mediated by tract integrity (but not sub-regional frontal volumes) for memory and post-error slowing. This thesis offers a novel perspective on the complex interplay among glucocorticoids, cognition and the structure of the ageing brain. The findings suggest some role for cortisol exposure in determining age-related decline in complex cognition, mediated via brain structure.
16

Beta oscillations underlie top-down, feedback control while gamma oscillations reflect bottom-up, feedforward influences

Loonis, Roman 01 November 2017 (has links)
Prefrontal cortex (PFC) is critical to behavioral flexibility and, hence, the top-down control over bottom-up sensory information. The mechanisms underlying this capacity have been hypothesized to involve the propagation of alpha/beta (8-30 Hz) oscillations via feedback connections to sensory regions. In contrast, gamma (30-160 Hz) oscillations are thought to arise as a function of bottom-up, feedforward stimulation. To test the hypothesis that such oscillatory phenomena embody such functional roles, we assessed the performance of nine monkeys on tasks of learning, categorization, and working memory concurrent with recording of local field potentials (LFPs) from PFC. The first set of tasks consisted of two classes of learning: one, explicit and, another, implicit. Explicit learning is a conscious process that demands top-down control, and in these tasks alpha/beta oscillations tracked learning. In contrast, implicit learning is an unconscious process that is automatic (i.e. bottom up), and in this task alpha/beta oscillations did not track learning. We next looked at dot-pattern categorization. In this task, category exemplars were generated by jittering the dot locations of a prototype. By chance, some of these exemplars were similar to the prototype (low distortion), and others were not (high distortion). Behaviorally, the monkeys performed well on both distortion levels. However, alpha/beta band oscillations carried more category information at high distortions, while gamma-band category information was greatest on low distortions. Overall, the greater the need for top-down control (i.e. high distortion), the greater the beta, and the lesser the need (i.e. low distortion), the greater the gamma. Finally, laminar electrodes were used to record from animals trained on working memory tasks. Each laminar probe was lowered so that its set of contacts sampled all cortical layers. During these tasks, gamma oscillations peaked in superficial layers, while alpha/beta peaked in deep layers. Moreover, these deep-layer alpha/beta oscillations entrained superficial alpha/beta, and modulated the amplitude of superficial-layer gamma oscillations. These laminar distinctions are consistent with anatomy: feedback neurons originate in deep layers and feedforward neurons in superficial layers. In summary, alpha/beta oscillations reflect top-down control and feedback connectivity, while gamma oscillations reflect bottom-up processes and feedforward connectivity.
17

Parietal neurophysiology during sustained attentional performance assessment of cholinergic contribution to parietal processing /

Broussard, John Isaac, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 131-154).
18

Humor Perception: The Contribution of Cognitive Factors

Baldwin, Erin 27 June 2007 (has links)
Most of the extant humor research has focused on humor comprehension with only a few studies investigating humor appreciation as a separate construct. The purpose of this investigation was to determine the relation between humor and underlying cognitive processes. Literature on brain injured individuals has indicated that working memory, verbal and visual-spatial reasoning, cognitive flexibility, and concept formation are related to performance on comprehension tests of humor. In this study, cognitive processes underlying both verbal and nonverbal humor were investigated in a sample of healthy young adults. There is evidence that semantic and phonological humor are associated with different neural networks; therefore, both semantic and phonological humor were explored. Studies investigating physiological arousal and humor have indicated that arousal is necessary for the experience of humor. This suggests that the appreciation of humor may require the integration of cognitive and affective information, a process mediated by the ventromedial prefrontal cortex (VMPFC). Thus, a second goal of this study was to investigate the relationship between humor comprehension and appreciation and the VMPFC, by including experimental tasks that previously have been linked to VMPFC functioning. Participants included 94 undergraduate psychology students between the ages of 18 and 39 years. Participants watched film clips and listened to jokes. After the presentation of each joke and each film clip, they completed a humor comprehension/appreciation inventory developed for this study. They also completed measures assessing a range of cognitive abilities hypothesized to underlie humor perception. Hierarchical regression analyses revealed that verbal reasoning was predictive of semantic humor comprehension, indicating that verbal reasoning is a core cognitive ability for the comprehension of jokes in which the humor depends on factors other than simple word play. Cognitive measures were not predictive of phonological humor comprehension or nonverbal humor comprehension. Hierarchical regression analyses revealed that the indicators of VMPFC functioning did not correlate with either humor comprehension or humor appreciation and did not moderate the relation between humor comprehension and humor appreciation. Future research is necessary to elucidate the relationships between cognitive abilities and humor perception and to further explore the contribution of the VMPFC to humor appreciation.
19

Differential Endogenous Estrogen Exposure Influences Prefrontal Cortex Response to Acute Stress

Rubinow, Katya 15 November 2006 (has links)
The present study was conducted to determine the effect of differential endogenous estrogen exposure in rats on stress-induced changes in spatial working memory. Subjects comprised male (n=8) and female (n=10) Sprague-Dawley rats, which were trained to complete a T maze, delayed alternation task. Performance was scored as a percentage of trials during which the correct maze arm was selected. Subjects scores were recorded after 1 and 2 hours of restraint stress, as well as after 1 hour of unimpeded movement in a cage placed in the testing room. Restraint stress was effected through physical confinement within plastic, cylindrical tubing. Female subjects underwent each of the testing conditions twice, during periods of high and low endogenous estrogen exposure, as ascertained by microscopic examination of vaginal epithelial cells for estrous cycle stage determination. Females in proestrus (elevated endogenous estrogen exposure) subjected to 1 hour of restraint performed significantly worse than their baseline scores (p=0.0017) or females in estrus (low endogenous estrogen exposure) after 1 hour of restraint (p=0.00014). After 1 hour of restraint, females in proestrus also committed an increased rate of perseverative errors compared to females in estrus, although this increase did not achieve statistical significance (p=0.06). No appreciable differences existed among subject groups in baseline performance or subsequent to 2 hours of restraint stress. Resultant data indicate impaired working memory among female rats under conditions of stress in the context of elevated endogenous estrogen exposure. This study, then, suggests a potential synergistic effect of stress and estrogen in compromising prefrontal cortex function and, therefore, may lend insight into the observed sex-related disparity in the incidence of major depressive disorder and other anxiety-related mood disorders.
20

Medial prefrontal cortical extracellular dopamine responses after acutely experimenter-administered or orally self-administered ethanol

Schier, Christina Joanne 11 November 2013 (has links)
Dopamine signaling in the prefrontal cortex is thought to play a role in ethanol abuse. However, little is known about how ethanol affects dopamine signaling in the region. There are a few rodent studies regarding the matter, but both the pharmacological effects of ethanol and the effects of self-administered ethanol on extracellular dopamine in the medial prefrontal cortex remain unclear. The goal of the studies conducted for this dissertation is to clarify these relationships. To accomplish this, we monitored both dialysate dopamine and ethanol concentrations in the medial prefrontal cortex of Long Evans rats while an experimenter administered or a rat operantly self-administered ethanol. In naïve rats, dopamine dose-dependently increased after the intravenous infusions of a 10% ethanol solution, while no changes were noted after saline infusions. In rats trained to orally self-administer drinking solutions, dopamine transiently increased at the initiation of consumption in both ethanol-plus-sucrose- and sucrose-solution-consuming rats. Dopamine concentrations remained significantly elevated for the entire 21-minute drinking period in the ethanol-plus-sucrose-consuming group and for the first seven minutes of the drink period in the sucrose-consuming group. Additionally, in the ethanol-plus-sucrose-consuming group, dialysate ethanol concentrations were lowest at the initiation of drinking and then slowly increased, peaking 35 minutes after drinking commenced. Taken together, these data suggest that the mesocortical dopamine system is responsive to acute, intravenous and repeatedly, orally, self-administered ethanol. It appears that direct pharmacological effects of ethanol were responsible for the dopamine increase after acute, ethanol administration. Furthermore, while is it possible that the direct pharmacological effects of ethanol also bolstered the dopamine response seen after ethanol self-administration, we cannot firmly conclude by what mechanism ethanol elicited the differences. Overall, our clarifying and novel results support a role for the mesocortical dopamine system in ethanol abuse, which deserves continued investigation. In addition to completing the two aforementioned data studies, we also published the methods we use to monitor dialysate ethanol concentrations, in a specific brain region, during ethanol self-administration in a video-methods journal. The methods are presented in both a detailed written protocol, as well as a video demonstrating how to perform the procedures. / text

Page generated in 0.0292 seconds