Spelling suggestions: "subject:"princípio local global"" "subject:"princípios local global""
1 |
Aritmética das curvas algébricasJosé Gondim Neves, Rodrigo January 2006 (has links)
Made available in DSpace on 2014-06-12T18:30:53Z (GMT). No. of bitstreams: 2
arquivo6738_1.pdf: 1322957 bytes, checksum: a77dfa59ea2e61dc7f17b01f14df78a4 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / Universidade Federal Rural de Pernambuco / Esta dissertação tem como principal objetivo expor o bem sucedido projeto de entender a aritmética das curvas algébricas a partir de sua geometria. Estaremos interessados em características
qualitativas do conjunto dos pontos K-racionais (K corpo de números) da curva tais como existência, finitude e estrutura algébrica.
Para curvas de gênero zero, mostramos o principio local-global (para quádricas) que garante a existência de um ponto em K baseado na existência de pontos em todos seus completamentos .
Para curvas de gênero um que possuem um ponto K-racional, o método da tangente e da secante fornece ao conjunto dos pontos K-racionais da curva uma estrutura algébrico-geométrica de grupo
abeliano, o principal resultado é o teorema de Mordell-Weil que garante que tal grupo é finitamente gerado, mostraremos mais geralmente o teorema de Mordell-Weil para variedades abelianas.
A última classe de curvas que iremos considerar são as curvas de gênero maior ou igual a dois, para tais curvas o conjunto dos pontos K-racionais é sempre finito. Este é o teorema de Faltings (que não
daremos uma demonstração completa)
|
2 |
Números p-ádicos e formas quadráticas / P-adic numbers and quadratic formsSantana, Luiz Fernando Rodrigues 10 October 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-10-22T13:10:57Z
No. of bitstreams: 2
Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-22T13:16:35Z (GMT) No. of bitstreams: 2
Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-10-22T13:16:35Z (GMT). No. of bitstreams: 2
Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-10-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This text presents the properties and definitions of p-adic numbers linked to the definition of quadratic forms. Hasse's theorem: “Every quadratic form, with 5 variables or more, has non-trivial p-adic zeros” exemplifies the Local- Global Principle, which in turn ensures that if a polynomial equation has non-trivial rational zeros if, and only if, It has non-trivial zeros over R and about Qp, p prime. / Este texto apresenta as propriedades e as definições de números p-ádicos atreladas à definição de formas quadráticas. O teorema de Hasse: “Toda forma quadrática, com 5 variáveis ou mais, possui zeros p-ádicos não
triviais” exemplifia o Princípio Local Global, que por sua vez garante que se uma equação polinomial possui zeros racionais não triviais se, e somente se, possui zeros não triviais sobre R e sobre Qp, p primo.
|
Page generated in 0.0708 seconds