Spelling suggestions: "subject:"principles maximum"" "subject:"5principles maximum""
1 |
Estrutura topológica do conjunto de soluções de perturbações não lineares do p-laplaciano / Topological structure of the solution set of ninlinear perturbation of the p-laplacianMarcial, Marcos Roberto 23 June 2014 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-01-16T17:13:32Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-01-16T17:40:15Z (GMT) No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) / Made available in DSpace on 2015-01-16T17:40:15Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5)
Previous issue date: 2014-06-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study the topological structure of the solution set for a class of problems
−Δpu = λ f (u)+μg(u)|∇u|p+Ψ(x) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,
where Ω ⊂ IRN is a bounded domain with ∂Ω smooth, p, λ, μ are constants with p > 1,
λ ≥ 0, μ ∈ IR and
f ,g : (0,∞)→IR Ψ : Ω→IR
are continuous functions. We will use Variational and Topological Methods, which includes
minimization of energy functional and building connected components of solutions in
a sense that we will define. Also we will employ arguments about the theory of regularity
for p-Laplacian operator, approach arguments , maximum principles, results about sub
and supersolutions and also arguments including monotonic type operators. / Neste trabalho estudamos a estrutura topológica do conjunto de soluções da classe de
problemas
−Δpu = λ f (u)+μg(u)|∇u|p+Ψ(x) em Ω,
u > 0 em Ω,
u = 0 sobre ∂Ω,
onde Ω⊂IRN é um domínio limitado com fronteira ∂Ω regular, p, λ, μ são constantes com
p > 1, λ ≥ 0, μ ∈ IR e f ,g : (0,∞)→IR, Ψ : Ω→IR são funções contínuas. Utilizamos
Métodos Variacionais e Topológicos, que incluem minimização de funcionais energia
e construção de componentes conexas de soluções em um sentido que definiremos.
Empregamos também argumentos sobre a teoria da regularidade para o operador p-
Laplaciano, argumentos de aproximação, bem como princípios de máximo, resultados
sobre sub e supersoluções e também argumentos com operadores tipo monotônico.
|
Page generated in 0.0461 seconds