Spelling suggestions: "subject:"cub e supersolução"" "subject:"cub e superstições""
1 |
Existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / Existence of multiple positive solutions for a class of quaselinear elliptic problems.MENESES, João Paulo Formiga de. 13 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-13T18:38:15Z
No. of bitstreams: 1
JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5) / Made available in DSpace on 2018-08-13T18:38:15Z (GMT). No. of bitstreams: 1
JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5)
Previous issue date: 2016-11-25 / Neste trabalho, utilizando sub e supersoluções e métodos variacionais sobre espaços de Orlicz-Sobolev, estudamos a existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / In this work, using sub and supersolutions and variational methods on
Orlicz-Sobolev spaces, we study the existence of multiple positive solutions
for a class of quasilinear elliptic problems.
|
2 |
Sobre existência e não-existência de soluções para problemas elípticos que envolvem um operador não-linear do tipo Timoshenko. / On existence and non-existence of solutions for elliptic problems involving a non-linear operator of the Tymoshenko type.AIRES, José Fernando Leite. 05 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-05T18:49:14Z
No. of bitstreams: 1
JOSÉ FERNANDO LEITE AIRES - DISSERTAÇÃO PPGMAT 2004..pdf: 619280 bytes, checksum: fd21b35d13e1bed399affca7c1d08370 (MD5) / Made available in DSpace on 2018-07-05T18:49:14Z (GMT). No. of bitstreams: 1
JOSÉ FERNANDO LEITE AIRES - DISSERTAÇÃO PPGMAT 2004..pdf: 619280 bytes, checksum: fd21b35d13e1bed399affca7c1d08370 (MD5)
Previous issue date: 2004-03 / Capes / Para visualização completa do resumo recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas de equações que não foram possíveis copia-las aqui. / For a complete preview of the summary we recommend downloading the file, since it has formulas of equations that could not be copied here.
|
3 |
O método das sub e supersoluções para um sistema do tipo (p,q)-Laplaciano. / The method of sub and supersolutions for a (p, q) -Laplaciano type system.SILVA, José de Brito. 08 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-08T20:06:07Z
No. of bitstreams: 1
JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5) / Made available in DSpace on 2018-08-08T20:06:07Z (GMT). No. of bitstreams: 1
JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5)
Previous issue date: 2013-10 / Capes / Neste trabalho discutiremos a existência de soluções fracas positivas para um sistema
do (p, q)-Laplaciano com mudança de sinal nas funções de peso, com domínio limitado
e fronteira suave. Para garantir a existência de soluções fracas positivas primeiramente
asseguraremos a solução positiva de um problema calásico que é o problema de autovalor do p-laplaciano, e do problema "linear"do p-laplaciano com condição zero de
Dirichlet. Feito isto usaremos a existência destas soluções para assegurar que o problema
em questão admite solução fraca positiva, via o método das sub-super-soluções / In this work we discuss the existence of weak positive solutions for a system (p, q)-
Laplacian with change of sign in the weight functions with bounded domain and smooth
boundary. To ensure the existence of weak positive solutions first will ensure a positive
solution to a classic problem that is the problem eigenvalue p-Laplacian value, and the
"linear"problem with zero condition p-Laplacian Dirichelt. Having done this we use
the existence of these solutions to ensure that the problem in question admits a weak
positive solution via the method of sub-super-solutions.
|
4 |
Soluções blow-up para uma classe de equações elípticas. / Blow-up solutions for a class of elliptic equations.SILVA, Geizane Lima da. 24 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-24T16:01:03Z
No. of bitstreams: 1
GEIZANE LIMA DA SILVA - DISSERTAÇÃO PPGMAT 2010..pdf: 596736 bytes, checksum: d02e34d40e7147e46c734ba297c181bf (MD5) / Made available in DSpace on 2018-07-24T16:01:03Z (GMT). No. of bitstreams: 1
GEIZANE LIMA DA SILVA - DISSERTAÇÃO PPGMAT 2010..pdf: 596736 bytes, checksum: d02e34d40e7147e46c734ba297c181bf (MD5)
Previous issue date: 2010-03 / Capes / Neste trabalho estudamos a existência de soluções positivas do tipo blow-up para uma classe de equações elípticas semilineares. Usamos argumentos desenvolvidos por Cîrstea & Radulescu [6], Lair & Wood [20] e as técnicas empregadas são o Método de Sub e Supersolução, Teoremas de Ponto Fixo e em alguns resultados exploramos a simetria radial e algumas estimativas para equações elípticas. / In this work we studied the existence of blow-up positive solutions for the class of semilinear elliptic equations. We used arguments developed by Cîrstea & Radulescu [6], and by Lair & Shaker [20] and the techniques used are the method of Sub and Supersolution, Fixed point theorems and some results explored radial symmetry and some estimates for elliptic equations.
|
5 |
O método de sub e supersolução e aplicações a problemas elípticos. / The method of sub and supersolution and applications to elliptical problems.LIMA, Annaxsuel Araújo de. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T17:20:25Z
No. of bitstreams: 1
ANNAXSUEL ARAÚJO DE LIMA - DISSERTAÇÃO PPGMAT 2011..pdf: 581866 bytes, checksum: cc44cd422d4a48ddad0354f215805918 (MD5) / Made available in DSpace on 2018-07-25T17:20:25Z (GMT). No. of bitstreams: 1
ANNAXSUEL ARAÚJO DE LIMA - DISSERTAÇÃO PPGMAT 2011..pdf: 581866 bytes, checksum: cc44cd422d4a48ddad0354f215805918 (MD5)
Previous issue date: 2011-04 / Neste trabalho, apresentamos métodos envolvendo sub e supersolução para estudar
a existência de solução de certas equações elípticas. / In this work, we present methods involving sub and supersolution to study the
existence of solution of certain elliptic equations.
|
6 |
Existência de soluções Blow-up via método de sub e supersolução para uma classe de problemas elípticos. / Existence of Blow-up solutions via sub and supersolution method for a class of elliptical problems.SILVA, Ailton Rodrigues da. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T12:59:20Z
No. of bitstreams: 1
AILTON RODRIGUES DA SILVA - DISSERTAÇÃO PPGMAT 2012..pdf: 874312 bytes, checksum: 1dc2f2515ff17b649766c1fa11f76b11 (MD5) / Made available in DSpace on 2018-08-05T12:59:20Z (GMT). No. of bitstreams: 1
AILTON RODRIGUES DA SILVA - DISSERTAÇÃO PPGMAT 2012..pdf: 874312 bytes, checksum: 1dc2f2515ff17b649766c1fa11f76b11 (MD5)
Previous issue date: 2012-02 / CNPq / Nesta dissertação, estudamos a existência de solução blow-up para uma classe de
problemas e sistemas elípticos. A principal ferramenta usada foi o Método de Sub e Supersolução, além de Regularidade Elíptica e alguns resultados de Equações Diferenciais Ordinárias. / In this dissertation, we study the existence of blow-up solution for some classes
of elliptic problem, which include scalar problem and elliptic systems. The main tool
used is the sub and super-solution methods combined with elliptic regularity and some
results of Ordinary Differential Equations.
|
7 |
Estrutura topológica do conjunto de soluções de perturbações não lineares do p-laplaciano / Topological structure of the solution set of ninlinear perturbation of the p-laplacianMarcial, Marcos Roberto 23 June 2014 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-01-16T17:13:32Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-01-16T17:40:15Z (GMT) No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) / Made available in DSpace on 2015-01-16T17:40:15Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5)
Previous issue date: 2014-06-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study the topological structure of the solution set for a class of problems
−Δpu = λ f (u)+μg(u)|∇u|p+Ψ(x) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,
where Ω ⊂ IRN is a bounded domain with ∂Ω smooth, p, λ, μ are constants with p > 1,
λ ≥ 0, μ ∈ IR and
f ,g : (0,∞)→IR Ψ : Ω→IR
are continuous functions. We will use Variational and Topological Methods, which includes
minimization of energy functional and building connected components of solutions in
a sense that we will define. Also we will employ arguments about the theory of regularity
for p-Laplacian operator, approach arguments , maximum principles, results about sub
and supersolutions and also arguments including monotonic type operators. / Neste trabalho estudamos a estrutura topológica do conjunto de soluções da classe de
problemas
−Δpu = λ f (u)+μg(u)|∇u|p+Ψ(x) em Ω,
u > 0 em Ω,
u = 0 sobre ∂Ω,
onde Ω⊂IRN é um domínio limitado com fronteira ∂Ω regular, p, λ, μ são constantes com
p > 1, λ ≥ 0, μ ∈ IR e f ,g : (0,∞)→IR, Ψ : Ω→IR são funções contínuas. Utilizamos
Métodos Variacionais e Topológicos, que incluem minimização de funcionais energia
e construção de componentes conexas de soluções em um sentido que definiremos.
Empregamos também argumentos sobre a teoria da regularidade para o operador p-
Laplaciano, argumentos de aproximação, bem como princípios de máximo, resultados
sobre sub e supersoluções e também argumentos com operadores tipo monotônico.
|
8 |
Análise funcional não-linear aplicada ao estudo de problemas elípticos não-locais. / Non-linear functional analysis applied to the study of non-local elliptic problems.LIMA, Natan de Assis. 24 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-24T14:12:47Z
No. of bitstreams: 1
NATAN DE ASSIS LIMA - DISSERTAÇÃO PPGMAT 2010..pdf: 614405 bytes, checksum: d19b00bf4d0fb78e21179e363cfc96f8 (MD5) / Made available in DSpace on 2018-07-24T14:12:47Z (GMT). No. of bitstreams: 1
NATAN DE ASSIS LIMA - DISSERTAÇÃO PPGMAT 2010..pdf: 614405 bytes, checksum: d19b00bf4d0fb78e21179e363cfc96f8 (MD5)
Previous issue date: 2010-03 / CNPq / Neste trabalho usaremos algumas técnicas da Análise Funcional Não-Linear para estudar a existência de solução para os chamados Problemas Elípticos Não-Locais, entre os quais destacamos aqueles que incluem o operador de Kirchhoff [...].
* Para visualizar o resumo recomendamos do download do arquivo uma vez que o mesmo utiliza formulas ou equações matemáticas que não puderam ser transcritas neste espaço. / In this work we will use same techniques of Nonlinear Analysis Functional to study the existence of solutions for the some Nonlocal Elliptic Problems, among then those which include Kirchhoff operator [...].
* To preview the summary we recommend downloading the file since it uses mathematical formulas or equations that could not be transcribed in this space.
|
Page generated in 1.6803 seconds