Spelling suggestions: "subject:"printed coiring board (PWB)"" "subject:"printed coiring hoard (PWB)""
1 |
Studies In Micro Interconnections In Printed Wiring BoardBhat, Shriram N 01 1900 (has links)
Trend towards downsizing the product size and at the same time to bring more functionality in electronic products, demands electrically interconnecting several miniaturized electronic components with high counts of I\Os (Input/Out put) on smaller and smaller size printed wiring boards [PWB]. These miniature components occupy lower foot print area but require higher routing interconnection densities. However, the conventional multilayer board technologies exhibit limitations when there is need to connect very high I\O components such as ball grid arrays, which require blind and buried interconnections within the multilayer mono-block. This limitation has given raise to newer methods of multi layer construction.
Build–up multilayer PWB is now the technology of choice for enhanced routing capability including blind and buried interlayer connections. Build up methods are based on making very small vias within dielectric layers followed by metalisation. Typically blind and buried vias are very small, and hence called “micro vias” connecting the layers selectively within the multilayer mono-block. Buried vias make the interconnection between the consecutive layers, and blind vias connect the surface layers to any one of the interior layers in the build up multilayer board. If the blind vias are filled with a dielectric, the entire top and bottom surface area becomes available for high -density component mounting.
The crux in build up board technologies is the method of creating micro-holes; a micro hole is a hole, which is less than 150 micro meter in diameter. Efforts are made to replace existing metalising techniques with “paste filling” methodologies, which would result in “SOLID CONDUCTING VIAS” CALLED AS “MICRO -INTERCONNECTS” The work reported in this thesis aims at demonstrating one such innovative ‘solid conducting via’ formation without using any of the known micro-hole formation techniques. Based on the results obtained some useful conclusions have been drawn which will perhaps go a long way in the name of “PRINTED PILLAR TECHNOLOGY” a novel methodology for building multilayer suitable for very high I\O components such as “ball grid arrays.”
|
2 |
Thermal Cycling Fatigue Investigation of Surface Mounted Components with Eutectic Tin-Lead Solder JointsBonner, J. K. "Kirk", de Silveira, Carl 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / Eutectic (63% tin-37% lead) or near-eutectic (40% tin-60% lead) tin-lead solder is widely used for creating electrical interconnections between the printed wiring board (PWB) and the components mounted on the board surface. For components mounted directly on the PWB mounting pads, that is, surface mounted components, the tin-lead solder also constitutes the mechanical interconnection. Eutectic solder has a melting point of 183°C (361°F). It is important to realize that its homologous temperature, defined as the temperature in degrees Kelvin over its melting point temperature (T(m)), also in degrees Kelvin, is defined as T/T(m). At room temperature (25°C = 298K), eutectic solder's homologous temperature is 0.65. It is widely acknowledged that materials having a homologous temperature ≥ 0.5 are readily subject to creep, and the solder joints of printed wiring assemblies are routinely exposed to temperatures above room temperature. Hence, solder joints tend to be subject to both thermal fatigue and creep. This can lead to premature failures during service conditions. The geometry, that is, the lead configuration, of the joints can also affect failure. Various geometries are better suited to withstand failure than others. The purpose of this paper is to explore solder joint failures of dual in-line (DIP) integrated circuit components, leadless ceramic chip carriers (LCCCs), and gull wing and J-lead surface mount components mounted on PWBs.
|
Page generated in 0.1024 seconds