Spelling suggestions: "subject:"derivate forminformation retrieval"" "subject:"derivate forminformation etrieval""
1 |
Private Information Retrieval in an Anonymous Peer-to-Peer EnvironmentMiceli, Michael 20 May 2011 (has links)
Private Information Retrieval (PIR) protocols enable a client to access data from a server without revealing what data was accessed. The study of Computational Private Information Retrieval (CPIR) protocols, an area of PIR protocols focusing on computational security, has been a recently reinvigorated area of focus in the study of cryptography. However, CPIR protocols still have not been utilized in any practical applications. The aim of this thesis is to determine whether the Melchor Gaborit CPIR protocol can be successfully utilized in a practical manner in an anonymous peer-to-peer environment.
|
2 |
Privacy Preservation for Nearby-Friends and Nearby-Places Location-Based ServicesHezaveh, Maryam 24 May 2019 (has links)
This thesis looks at the problem of discovering nearby friends and nearby places of interest in a privacy-preserving way using location-based services on mobile devices (e.g., smartphones). First, we propose a privacy-preserving protocol for the discovery of nearby friends. In this scenario, Alice wants to verify whether any of her friends are close to her or not. This should be done without disclosing any information about Alice to her friends and also any of the other parties’ information to Alice. We also demonstrate that our approach can be efficiently applied to other similar problems; in particular, we use it to provide a solution to the socialist millionaires' problem.
Second, we propose a privacy-preserving protocol for discovering nearby places of interest. In this scenario, the proposed protocol allows Alice to learn whether there is any place that she is looking for near her. However, the location-based service (LBS) that tries to help Alice to find nearby places does not learn Alice’s location. Alice can send a request to the LBS database to retrieve nearby places of interest (POIs) without the database learning what Alice fetched by using private information retrieval (PIR). Our approach reduces the client side computational overhead by applying the grid square system and the POI types ideas to block-based PIR schemes to make it suitable for LBS smartphone applications. We also show our second approach is flexible and can support all types of block-based PIR schemes.
As an item of independent interest, we also propose the idea of adding a machine learning algorithm to our nearby friends’ Android application to estimate the validity of a user's claimed location to prevent users from sending a fake location to the LBS application.
|
3 |
Chiffrement homomorphe appliqué au retrait d'information privé / Homomorphic encryption applied on Private Information RetrievalBarrier, Joris 13 December 2016 (has links)
Le retrait d’information privé que nous nommons PIR, désigne un groupe de protocoles qui s’inscrit dans un ensemble plus vaste des technologies d’amélioration de la vie privée. Sa fonctionnalité principale est de dissimuler l’index d’un élément d’une liste accédée par un client au regard de son hôte. Sans négliger l’appart de leurs auteurs à la communauté scientifique, l’utilisabilité de ce groupe de protocoles semble limitée, car pour un client, télécharger l’intégralité de la liste est plus efficient. À ce jour, les PIR, se fondent sur des serveurs répliqués mutuellement méfiants, des périphériques de confiance ou bien des systèmes cryptographiques. Nous considérerons ici les retraits d’informations privés computationnels et plus particulièrement ceux reposant sur les réseaux euclidiens qui n’offrent des propriétés particulières, comme l’homomorphisme. Afin d’en démontrer l’utilisabilité, nous proposons un retrait d’information privé reposant sur un système cryptographique homomorphe performant et aisé d’utilisation / Private information retrieval, named PIR, is a set of protocols that is a part of privacy enhancement technologies.Its major feature is to hide the index of a record that a user retrieved from the host.Without neglecting the scientific contributions of its authors, the usability of this protocol seems hard since that, for a user, it seems more and more efficient to receive all the records.Thus far, PIR can be achieved using mutually distrustful databases replicated databases, trusted hardware, or cryptographic systems.We focus on computational private information retrieval, and specifically on thus based on cryptographic systems.This decision is contingent to the spread of cryptographic systems based on lattices who provide specific properties.To demonstrate it usability, we offer an efficient and easy-to-use private Information retrieval based on homomorphic encryption.
|
4 |
Efficient Linear Secure Computation and Symmetric Private Information Retrieval ProtocolsZhou, Yanliang 12 1900 (has links)
Security and privacy are of paramount importance in the modern information age. Secure multi-party computation and private information retrieval are canonical and representative problems in cryptography that capture the key challenges in understanding the fundamentals of security and privacy. In this dissertation, we use information theoretic tools to tackle these two classical cryptographic primitives. In the first part, we consider the secure multi-party computation problem, where multiple users, each holding an independent message, wish to compute a function on the messages without revealing any additional information. We present an efficient protocol in terms of randomness cost to securely compute a vector linear function. In the second part, we discuss the symmetric private information retrieval problem, where a user wishes to retrieve one message from a number of replicated databases while keeping the desired message index a secret from each individual database. Further, the user learns nothing about the other messages. We present an optimal protocol that achieves the minimum upload cost for symmetric private information retrieval, i.e., the queries sent from the user to the databases have the minimum number of bits.
|
5 |
Authentification d'objets à distance / Remote object authentication protocolsLancrenon, Jean 22 June 2011 (has links)
Cette thèse est consacrée à la description et à l'étude de la sécurité de divers protocoles destinés à faire de l'authentification d'objets physiques à distance à base de comparaison de vecteurs binaires. L'objectif des protocoles proposés est de pouvoir réaliser une authentification en garantissant d'une part que les informations envoyées et reçues par le lecteur n'ont pas été manipulées par un adversaire extérieur et d'autre part sans révéler l'identité de l'objet testé à un tel adversaire, ou même, modulo certaines hypothèses raisonnables, aux composantes du système. Nous nous sommes fixés de plus comme objectif d'utiliser des méthodes de cryptographie sur courbe elliptique pour pouvoir profiter des bonnes propriétés de ces dernières, notamment une sécurité accrue par rapport à la taille des clefs utilisées. Nous présentons plusieurs protocoles atteignant l'objectif et établissons pour presque tous une preuve théorique de leur sécurité, grâce notamment à une nouvelle caractérisation d'une notion standard de sécurité. / This thesis is dedicated to the description of several bitrsitring comparison based remote object authentication protocols and the study of their theoretical security. The proposed protocols are designed to carry out the authentication of a given object while simultaneously guaranteeing that the information sent and received by the server cannot be tampered with by outside adversaries and that the identity of the tested object remains hidden from outside and (certain) inside adversaries. Finally it has been our objective to use elliptic curve cryptography, taking advantage of its useful properties, notably a better security level to key-size ratio. We present several protocols reaching these objectives, establishing for almost each protocol a theoretical proof of security using a new characterization of a standard security notion.
|
6 |
Practical Private Information RetrievalOlumofin, Femi George January 2011 (has links)
In recent years, the subject of online privacy has been attracting much interest, especially as more Internet users than ever are beginning to care about the privacy of their online activities. Privacy concerns are even prompting legislators in some countries to demand from service providers a more privacy-friendly Internet experience for their citizens. These are welcomed developments and in stark contrast to the practice of Internet censorship and surveillance that legislators in some nations have been known to promote. The development of Internet systems that are able to protect user privacy requires private information retrieval (PIR) schemes that are practical, because no other efficient techniques exist for preserving the confidentiality of the retrieval requests and responses of a user from an Internet system holding unencrypted data. This thesis studies how PIR schemes can be made more relevant and practical for the development of systems that are protective of users' privacy.
Private information retrieval schemes are cryptographic constructions for retrieving data from a database, without the database (or database administrator) being able to learn any information about the content of the query. PIR can be applied to preserve the confidentiality of queries to online data sources in many domains, such as online patents, real-time stock quotes, Internet domain names, location-based services, online behavioural profiling and advertising, search engines, and so on.
In this thesis, we study private information retrieval and obtain results that seek to make PIR more relevant in practice than all previous treatments of the subject in the literature, which have been mostly theoretical. We also show that PIR is the most computationally efficient known technique for providing access privacy under realistic computation powers and network bandwidths. Our result covers all currently known varieties of PIR schemes. We provide a more detailed summary of our contributions below:
Our first result addresses an existing question regarding the computational practicality of private information retrieval schemes. We show that, unlike previously argued, recent lattice-based computational PIR schemes and multi-server information-theoretic PIR schemes are much more computationally efficient than a trivial transfer of the entire PIR database from the server to the client (i.e., trivial download). Our result shows the end-to-end response times of these schemes are one to three orders of magnitude (10--1000 times) smaller than the trivial download of the database for realistic computation powers and network bandwidths. This result extends and clarifies the well-known result of Sion and Carbunar on the computational practicality of PIR.
Our second result is a novel approach for preserving the privacy of sensitive constants in an SQL query, which improves substantially upon the earlier work. Specifically, we provide an expressive data access model of SQL atop of the existing rudimentary index- and keyword-based data access models of PIR. The expressive SQL-based model developed results in between 7 and 480 times improvement in query throughput than previous work.
We then provide a PIR-based approach for preserving access privacy over large databases. Unlike previously published access privacy approaches, we explore new ideas about privacy-preserving constraint-based query transformations, offline data classification, and privacy-preserving queries to index structures much smaller than the databases. This work addresses an important open problem about how real systems can systematically apply existing PIR schemes for querying large databases.
In terms of applications, we apply PIR to solve user privacy problem in the domains of patent database query and location-based services, user and database privacy problems in the domain of the online sales of digital goods, and a scalability problem for the Tor anonymous communication network.
We develop practical tools for most of our techniques, which can be useful for adding PIR support to existing and new Internet system designs.
|
7 |
Combinatorial structures for anonymous database searchStokes, Klara 18 October 2011 (has links)
This thesis treats a protocol for anonymous database search (or if one prefer, a protocol for user-private information retrieval), that is based on the use of combinatorial configurations. The protocol is called P2P UPIR. It is proved that the (v,k,1)-balanced incomplete block designs (BIBD) and in particular the finite projective planes are optimal configurations for this protocol. The notion of n-anonymity is applied to the configurations for P2P UPIR protocol and the transversal designs are proved to be n-anonymous configurations for P2P UPIR, with respect to the neighborhood points of the points of the configuration. It is proved that to the configurable tuples one can associate a numerical semigroup. This theorem implies results on existence of combinatorial configurations. The proofs are constructive and can be used as algorithms for finding combinatorial configurations. It is also proved that to the triangle-free configurable tuples one can associate a numerical semigroup. This implies results on existence of triangle-free combinatorial configurations.
|
8 |
Practical Private Information RetrievalOlumofin, Femi George January 2011 (has links)
In recent years, the subject of online privacy has been attracting much interest, especially as more Internet users than ever are beginning to care about the privacy of their online activities. Privacy concerns are even prompting legislators in some countries to demand from service providers a more privacy-friendly Internet experience for their citizens. These are welcomed developments and in stark contrast to the practice of Internet censorship and surveillance that legislators in some nations have been known to promote. The development of Internet systems that are able to protect user privacy requires private information retrieval (PIR) schemes that are practical, because no other efficient techniques exist for preserving the confidentiality of the retrieval requests and responses of a user from an Internet system holding unencrypted data. This thesis studies how PIR schemes can be made more relevant and practical for the development of systems that are protective of users' privacy.
Private information retrieval schemes are cryptographic constructions for retrieving data from a database, without the database (or database administrator) being able to learn any information about the content of the query. PIR can be applied to preserve the confidentiality of queries to online data sources in many domains, such as online patents, real-time stock quotes, Internet domain names, location-based services, online behavioural profiling and advertising, search engines, and so on.
In this thesis, we study private information retrieval and obtain results that seek to make PIR more relevant in practice than all previous treatments of the subject in the literature, which have been mostly theoretical. We also show that PIR is the most computationally efficient known technique for providing access privacy under realistic computation powers and network bandwidths. Our result covers all currently known varieties of PIR schemes. We provide a more detailed summary of our contributions below:
Our first result addresses an existing question regarding the computational practicality of private information retrieval schemes. We show that, unlike previously argued, recent lattice-based computational PIR schemes and multi-server information-theoretic PIR schemes are much more computationally efficient than a trivial transfer of the entire PIR database from the server to the client (i.e., trivial download). Our result shows the end-to-end response times of these schemes are one to three orders of magnitude (10--1000 times) smaller than the trivial download of the database for realistic computation powers and network bandwidths. This result extends and clarifies the well-known result of Sion and Carbunar on the computational practicality of PIR.
Our second result is a novel approach for preserving the privacy of sensitive constants in an SQL query, which improves substantially upon the earlier work. Specifically, we provide an expressive data access model of SQL atop of the existing rudimentary index- and keyword-based data access models of PIR. The expressive SQL-based model developed results in between 7 and 480 times improvement in query throughput than previous work.
We then provide a PIR-based approach for preserving access privacy over large databases. Unlike previously published access privacy approaches, we explore new ideas about privacy-preserving constraint-based query transformations, offline data classification, and privacy-preserving queries to index structures much smaller than the databases. This work addresses an important open problem about how real systems can systematically apply existing PIR schemes for querying large databases.
In terms of applications, we apply PIR to solve user privacy problem in the domains of patent database query and location-based services, user and database privacy problems in the domain of the online sales of digital goods, and a scalability problem for the Tor anonymous communication network.
We develop practical tools for most of our techniques, which can be useful for adding PIR support to existing and new Internet system designs.
|
9 |
Towards secure computation for peopleIssa, Rawane 23 June 2023 (has links)
My research investigates three questions: How do we customize protocols and implementations to account for the unique requirement of each setting and its target community, what are necessary steps that we can take to transition secure computation tools into practice, and how can we promote their adoption for users at large? In this dissertation I present several of my works that address these three questions with a particular focus on one of them.
First my work on "Hecate: Abuse Reporting in Secure Messengers with Sealed Sender" designs a customized protocol to protect people from abuse and surveillance in online end to end encrypted messaging. Our key insight is to add pre-processing to asymmetric message franking, where the moderating entity can generate batches of tokens per user during off-peak hours that can later be deposited when reporting abuse.
This thesis then demonstrates that by carefully tailoring our cryptographic protocols for real world use cases, we can achieve orders of magnitude improvements over prior works with minimal assumptions over the resources available to people.
Second, my work on "Batched Differentially Private Information Retrieval" contributes a novel Private Information Retrieval (PIR) protocol called DP-PIR that is designed to provide high throughput at high query rates. It does so by pushing all public key operations into an offline stage, batching queries from multiple clients via techniques similar to mixnets, and maintain differential privacy guarantees over the access patterns of the database.
Finally, I provide three case studies showing that we cannot hope to further the adoption of cryptographic tools in practice without collaborating with the very people we are trying to protect. I discuss a pilot deployment of secure multi-party computation (MPC) that I have done with the Department of Education, deployments of MPC I have done for the Boston Women’s Workforce Council and the Greater Boston Chamber of Commerce, and ongoing work in developing tool chain support for MPC via an automated resource estimation tool called Carousels.
|
10 |
Relax the Reliance on Honesty in Distributed Cryptographic ProtocolsTiantian Gong (19838595) 14 October 2024 (has links)
<p dir="ltr">Distributed cryptographic protocols typically assume a bounded number of malicious parties (who behave arbitrarily) in the system---and in turn, a lower bound on the number of <i>honest</i> parties (who follow and only follow a protocol faithfully/honestly without performing unspecified computations)---for their respective security guarantees to hold. However, when deploying these protocols in practice, the nature of computing parties does not necessarily align nicely with the protocols' assumptions. Specifically, there may be only a few honest/compliant parties, or none exists. Instead, non-malicious parties may be <i>semi-honest</i> (who follow the protocol specifications but are curious to learn as much information as possible from semi-honest parties' transcripts) or <i>rational</i> (who take actions that maximize their utilities instead of actions benefiting the protocol the most, e.g., performing extra computations or not following protocols). In such cases, the security guarantees of such protocols may deviate greatly in real life from what is theoretically promised, leaving a huge gap between theory and practice. </p><p dir="ltr">In this thesis, I bridge such a gap by enhancing the fault tolerance of various distributed cryptographic primitives by <i>relaxing the assumption on the existence of honest parties</i>.</p><p dir="ltr">First, in the context of <b>secure multi-party computations</b>, without honest parties, my goal is to induce honest (i.e., not compromising correctness) and non-curious (i.e., not harming privacy) behaviors from rational participants via game theoretic and cryptographic techniques. In particular, I first demonstrate how to ensure protocol correctness and deter collusion among parties to recover secrets---which also breaks privacy---in multiserver private information retrieval with a singleton access structure. Then for primitives with more general (non-singleton) access structures, I introduce a distinct treatment through the lens of verifiable secret sharing. The two solutions are designed with a public bulletin board, commitment schemes, digital signature schemes, zkSNARKs (zero-knowledge succinct non-interactive arguments of knowledge), and distinct incentive structures tailored for varying access structures underlying the schemes.</p><p dir="ltr">Second, in <b>permissionless blockchain systems</b>, for protocols without privacy guarantees like computation outsourcing and consensus, my goal is to incentivize rational parties to behave correctly. This means to act according to the protocol specifications or as implied by the security requirements of the primitive, e.g., fairly distribute rewards to participants based on contributions in proof-of-work (PoW) blockchains. Specifically, I present a defense against an undercutting attack in PoW blockchains from a game theory perspective and propose a decentralized computation outsourcing protocol built on permissionless blockchain systems based on multi-unit auctions.</p>
|
Page generated in 0.702 seconds