• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 543
  • 133
  • 105
  • 98
  • 50
  • 40
  • 23
  • 19
  • 17
  • 14
  • 6
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 1301
  • 207
  • 169
  • 161
  • 160
  • 132
  • 124
  • 108
  • 103
  • 93
  • 91
  • 91
  • 84
  • 83
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Real ear unaided response in Chinese young adults /

Ma, Cho-yin. January 2000 (has links)
Thesis (M. Sc.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 40-45).
42

Studies on chondrocyte differentiation in vivo and in vitro

Wroblewski, Joanna. January 1987 (has links)
Thesis (doctoral)--Karolinska Universitet, Stockholm, 1987. / Added t.p. with thesis statement inserted. Includes bibliographical references.
43

Femtosecond photoelectron spectroscopy for observation of chemical reactions

Graefe, Oksana. Unknown Date (has links)
University, Diss., 2005--Kassel.
44

The Synthesis of [16,17-^14C]Geranylgeranyl Pyrophosphate as a Probe for The Biosynthesis of Taxol

Huynh, Tram 12 1900 (has links)
<P> Taxol, a highly functionalized and complex diterpene belonging to the taxane group, possesses strong antitumor activity against various cancers, especially in cases of advanced ovarian and breast cancers. Because of the unique mechanism of action and the unusual chemical structure, taxol may represent the prototype of a new class of chemotherapeutic agents. The non-clinical work up to date on taxol is described in this thesis, including natural resources, chemical synthesis and chemical manipulation of taxol. </p> <p> The biosynthesis of taxol has not yet been studied. The hypothesis proposed for the biosynthetic sequence involves cyclization of geranylgeranyl pyrophosphate (GGPP) into hydrocarbon intermediates, which are then further transformed into taxol. In order to study the biosynthesis of taxol, [^14C]-labelled GGPP was prepared. Through the use of this labelled precursor in incubations with cell-free extract of yew labelled biosynthetic intermediates which are formed can be isolated and identified, hence leading to further understanding of the biosynthesis of taxol. </p> <p> The synthesis of [16,17-^14C]geranylgeranyl pyrophosphate was achieved in eight steps starting from commercially available geranylgeraniol. The alcohol was protected as the acetate derivative and the terminal double bond selectively epoxidized. The epoxide was opened to the diol, which was then cleaved. The resulting aldehyde was coupled to [^14C] isopropyltriphenylphosphonium ylid in a Wittig reaction, giving [16,17-14C]geranylgeraniol after deprotection of the acetate group. The alcohol was converted into the chloride derivative and subsequently to [16,17-14C]geranylgeranyl pyrophosphate. </p> / Thesis / Master of Science (MSc)
45

Experimental Studies of Spacecraft Plasma Interactions: Facility Characterization and Initial Measurements

Sawyer, Samuel Thomas 07 July 2009 (has links)
The objectives of this thesis are to characterize the plasma environment of a new vacuum chamber facility at Virginia Tech and to perform initial measurements of plasma flow field for studying spacecraft-plasma interactions using this facility. An argon plasma environment was created using a hot filament cathode plasma source. Flange plates attached to the sides of the vacuum chamber were modified in order to attach various feedthroughs both now and in the future such that a probe array DAQ system could be used to expedite measurement and analysis. A Langmuir probe array was used to measure 3-D plasma flow field in the chamber. A Matlab code was developed for automatic evaluation of the Langmuir probe traces. Two sets of measurements were preformed. The first measurement characterizes the plasma produced by the hot filament cathode in the chamber. Langmuir Probes were used to characterize the plasma environment yielding the following average characteristics: Plasma Potential = 5.5486V, Electron Saturation Current = 0.003421A, Electron Temperature = 1.505eV, and the Plasma Density = 6.806*10^14 m^-3. It was found that for both the spherical and cylindrical probes used in the test facility Rs > Debye length and thus were analyzed under the thin sheath condition. The second measurement attempts to measure the 3-D plasma flow field for plasma flow over a structure composed of 4-inch biased Al box sitting on a biased Al plate. The results show signs of the the generation of the expansion pre-sheath structure at the leading edge of the plate and the box upper surface predicted by numerical models. However, the current diagnostics system does not have the spatial resolution and range as well as the data accuracy required to reach a definitive measurement of plasma presheath and plasma wake. / Master of Science
46

Analysis of the Use of Probe Vehicles for Road Infrastructure Data Analysis

Valeri, Stephen M. 23 August 2012 (has links)
This thesis explores the concept of using sensors found in normal vehicles, also known as probe vehicles, to collect road infrastructure data. This concept was demonstrated by measuring vertical acceleration using in-vehicle sensors in order to describe road ride quality. Data collection was performed at the Virginia Smart Road using two instrumented vehicles. The gathered information was compared to road profile data collection, which is the current state-of-the-practice in ride quality assessment. Following the concept validation, the acceleration measurements were further analyzed for repeatability and effect of various independent variables (vehicle speed and type). A network-level simulation was completed using the robust set of measurements from the experiment. In addition, methodology for identifying rough sections and locations were established. Results show that under controlled testing conditions, roadway profile can accurately be estimated using probe vehicle acceleration data and may provide a more practical way to measure road smoothness. The analysis also showed that vertical acceleration data from a fleet of probe vehicles can successfully identify poorly-conditioned pavement areas. This suggests that instrumented probe vehicles might be a viable and effective way of implementing a network level roadway health monitoring program in the near future. / Master of Science
47

Plasma Flow Velocity Measurements Using A Gundestrup Probe In The STOR-M Tokamak

St. Germaine, Geoffrey Martin Reginald 22 August 2006
The profile of the poloidal velocity in the edge region of tokamak plasmas has been identified as playing a major role in the confinement of particles and energy. It has been suggested that a strongly sheared poloidal flow can reduce particle and energy losses by the stabilization of unstable modes and decorrelation of turbulence the edge region of the plasma. A Gundestrup probe, a Mach probe array, is used to measure both the parallel and perpendicular flow velocities in the Saskatchewan Torus-Modified (STOR-M) tokamak during several discharge conditions. It is observed that during Ohmic discharges there is no velocity shear and the direction of the parallel flow is independent of the direction of the toroidal magnetic field. During H-mode induced by a turbulent heating current pulse, a region of strong velocity shear develops in the plasma edge and an edge transport barrier develops. This results in a short period of improved particle and energy confinement with reduced fluctuation amplitudes. During electrode biasing experiments, a stainless steel biasing electrode is inserted into the plasma up to r = 82 mm and biased to +500 V relative to the vacuum chamber. It is observed that the particle confinement improves during the biasing phase while the energy confinement is degraded. A region of weak shear in the poloidal flow is observed in the plasma scrapeoff layer (SOL). The results from STOR-M are compared with results from data taken in the Czech Academy of Sciences Torus (CASTOR) tokamak during both Ohmic discharges and discharges with electrode biasing.
48

A Study on the Fabrication of Glass Fiber Probes Using Heating-Pulling Method

Lin, Tzu-Wei 05 September 2011 (has links)
Due to the explosive improvement of micro machining technology, many kinds of meso-scale products and parts are developed. There are two techniques, CMM (Coordinate Measuring Machine) and SPM (Scanning Probe Microscopy), commonly used to measure the profile of meso-scale products. However, both of these methods have their own strengths and weaknesses in that scale. The CMM can¡¦t be precise and accurate; while the SPM measurement system will be a time-consuming process. The micro scale CMM measurement system with micro spherical probes would be suitable for measuring meso-scale objects. In this study, equipments are built to fabricate the micro spherical probes. The glass optical fiber is selected as the material to fabricate the probes. The heating-pulling method and arc fusion method are selected as the fabrication process. The commercial equipments are available for fabricating micropipette and NSOM (Near-field Scanning Optical Microscopy) probes. However, most of these commercial equipments are expensive, and the heating area is too small to fit our study. In this study, the gas heater is used to replace the laser power as a heat source. A vertical pulling mechanism is developed to pull the optical fiber. Moreover, this study uses Taguchi method to reduce the number of experimental runs and find the suitable parameters for fabrication. The straight-circular-cone-type probe and the bent-circular-cone-type probe can be fabricated at the same time. The radius of the probe tip can be smaller than 0.5£gm for NSOM. In addition, the heating-pulling mechanism can reduce the diameter of optical fiber from £p125£gm to less than £p50£gm for different purposes. An arc discharge machine is also developed to melt the cleaved end-face of the prob. The heating-pulling mechanism and arc discharge machine developed in this study are successfully applied in fabricating different types of probe ends, £p20~125£gm hemispherical end-face and £p50~300£gm spherical end-face for example, for different applications.
49

A Study on the Fabrication of Glass Probes with Spherical Head

Huang, Yu-hsuang 13 September 2012 (has links)
Since micro machining technologies are dramatically improved, many kinds of meso-to-micro scale products are developed. The Coordinate Measuring Machine(CMM) and the Scanning Probe Microscope(SPM) are the most commonly used instrument for precision measurement. To acquire geometric characteristic of products in meso scale, the CMM is not adequate due to the minimum diameter of ruby-ball head probes are 300 to 500£gm; while the SPM will be a time-consuming process. Thus, proper probes for meso-scale coordinate measuring machines are necessarily developed. The commercial fusion splicers are available to fabricate glass probes with spherical head. However, the commercial fusion splicers are expensive and the fiber clamps can not fit the diameter of probe stylus in this study. Therefore, instruments are implemented to fabricate the glass probe with spherical head for the meso-scale coordinate measuring machine. The
50

Design Of A Touch Trigger Probe For A Coordinate Measuring Machine

Karuc, Emre 01 December 2007 (has links) (PDF)
Coordinate Measuring Machines (CMMs) have been widely used in industry in order to determine the form / dimensional tolerances of workpieces with very complicated geometrical shapes. Therefore, CMM is an important tool during the manufacturing and quality control phases. Workpiece to be measured on a CMM is probed via touch trigger probe through its stylus tip. In other words, by virtue of the touch trigger probes CMM can acquire the dimensional data of the workpiece that is to be measured. Therefore the probe has become the most vital and fundamental part of the CMM. In this thesis, a novel type of touch trigger probe / scanning probe is proposed. The proposed probe can also be used as a scanning probe for different applications. The main purpose of this thesis is to develop a novel type of touch trigger / scanning probe that has different kinematic stage and sensing stage than the other probes currently used in the industry. Giant Magnetoresistive (GMR) sensors are used for building the sensing stage of the proposed probe. GMR sensors are selected due to their outstanding sensitivity to small disturbances. Furthermore, in order to test the proposed probe / an anvil gauge setup is designed and proposed in this study. Finally, proposed probe is tested on a three-axis computer controlled electrical discharge machine (EDM), and the results acquired from those experiments are discussed.

Page generated in 0.0318 seconds