• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur un problème inverse de type Cauchy en théorie des plaques minces élastiques

Eyimi Mintoo Ebang, Azariel Paul 20 January 2011 (has links) (PDF)
Dans cette thèse, nous résolvons un problème inverse de type Cauchy associé à l'opérateur biharmonique. Pour des données compatibles, comme ce problème est mal posé au sens d'Hadamard, nous utilisons la méthode de régularisation évanescente. Elle est itérative. Son originalité est de faire intervenir, à chaque itération, un problème d'optimisation bien posé qui dépend d'un terme de régularisation dont les effets se dissipent à la limite du processus itératif. Cette limite n'est autre que la solution du problème de Cauchy. Pour adapter des algorithmes élaborés pour les problèmes de Cauchy associés au laplacien, nous factorisons le problème initial en deux problèmes inverses de Cauchy pour l'opérateur harmonique. Les résultats principaux sont la convergence de la solution discrète vers la solution continue et l'efficacité de la méthode à gérer numériquement, via les éléments finis, le problème factorisé sur différents domaines, même lorsque les données sont bruitées.
2

Sur des techniques déterministes et stochastiques appliquées aux problèmes d'identification

Dousteyssier-Buvat, Hélène 19 September 1995 (has links) (PDF)
Ce travail porte sur les aspects numériques de la résolution de problèmes inverses non linéaires gouvernés par des équations aux dérivées partielles, à l'aide des techniques du contrôle optimal. Nous nous sommes limités dans cette thèse à l'étude de deux problèmes: identification du coefficient de diffusion de la chaleur, identification de sources non linéaires dans des e.d.p. elliptiques. Ces deux problèmes sont résolus numériquement à l'aide d'une approche lagrangienne, les fonctions sont identifiées par leurs coefficients dans une base de B-splines cubiques. Ces problèmes étant mal posés, on étudie des techniques de choix du paramètre de régularisation de Tikhonov, comme les méthodes de validation croisée. On résout ensuite ces deux problèmes dans une base d'ondelettes, ce qui nous permet, par le biais d'un changement de base approprié, de réduire le caractère mal posé de ces problèmes, et de mener à bien l'identification sans terme de régularisation. Dans les problèmes réels, la solution exacte étant généralement inconnue, lorsqu'on dispose d'un estimateur, il n'est a priori pas possible de savoir s'il s'agit d'un «bon» estimateur. On peut remédier à ce problème à l'aide des courbures de la surface des réponses, qui nous permettent de quantifier le degré de non linéarité de la surface au voisinage de l'estimateur obtenu et de justifier l'usage des méthodes séquentielles quadratiques utilisées pour l'identification

Page generated in 0.0567 seconds