Spelling suggestions: "subject:"problema restrita"" "subject:"oproblema restrita""
1 |
O problema restrito elíptico dos três corpos com colisãode Fátima de Medeiros Brandão Dias, Lúcia January 2007 (has links)
Made available in DSpace on 2014-06-12T18:31:25Z (GMT). No. of bitstreams: 2
arquivo8701_1.pdf: 1516305 bytes, checksum: c60dee928595b5ce00f6d3e80c35ad52 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2007 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, estudamos o problema restrito dos três corpos onde os primários movem-se numa órbita elíptica de colisão, isto é, o momento angular dos primários é identicamente zero e a energia é negativa. Este problema apresenta três subproblemas, a saber: o caso estritamente espacial (isto é, a partícula infinitesimal move-se no espaço); o caso planar (isto é, a partícula infinitesimal move-se num plano que contém os primários) e o caso isósceles (isto é, a partícula infinitesimal move-se em um plano ¡ perpendicular a reta que contém os primários e passando através do centro de massa dos primários). É relevante observar que a dinâmica dos primários é periódica e contém um número infinito de colisões. Assim, os primários representam um termo de for»ca periódica no sistema, fazendo com que esse sistema seja não conservativo. Esta é uma das grandes dificuldades em se obter uma descrição completa da dinâmica deste problema. Esses três subproblemas foram escritos como uma perturbação do problema de Kepler, desta maneira obtivemos uma grande quantidade de órbitas periódicas. A técnica usada para conseguirmos tais órbitas foi o método da Continuação Analítica de Poincaré. No entanto, não foi possível usar o Teorema da Função Implícita na sua forma padrão, uma vez que não temos a diferenciabilidade suficiente do campo devido ao parâmetro perturbador introduzido. Para contornar este problema, usamos o Teorema de Arenstorf, o qual exige um pouco menos do campo. No caso isósceles, o qual chamamos por problema restrito dos três corpos isósceles elíptico com colisão, obtemos mais informações sobre a dinâmica da partícula. Além de provarmos a existência de uma grande quantidade de órbitas periódicas, conseguimos mergulhar o shift de Bernoulli em uma seção conveniente do fluxo, mostrando que este problema possue uma dinâmica caótica. Além disso, construímos esta dinâmica simbólica
|
2 |
Estabilidade Linear no Problema de Robe / Linear stability problem of RobeNASCIMENTO, Francisco José dos Santos 17 February 2017 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-04-19T13:09:32Z
No. of bitstreams: 1
Francisco José dos Santos Nascimento.pdf: 743351 bytes, checksum: 997f8a5009a3bbc979a7206041daf583 (MD5) / Made available in DSpace on 2017-04-19T13:09:32Z (GMT). No. of bitstreams: 1
Francisco José dos Santos Nascimento.pdf: 743351 bytes, checksum: 997f8a5009a3bbc979a7206041daf583 (MD5)
Previous issue date: 2017-02-17 / CAPES / In this work, we discuss the article The Existence and Stability of Equilibrium
Points in the Robe Restricted Three-Body Probem due to Hallan and Rana. For this we
present some basic definitions and results abut Hamiltonian systems such as equilibrium
stability of linear Hamiltonian systems. We set out the restricted problem of the three
bodies and show some classic results of the problem. Finally we present the Robe’s
problem and discuss the main results using Hamiltonian systems theory. / Nesse trabalho, dissertamos sobre o artigo \The Existence and Stability of Equilibrium Points in the Robe Restricted Three-Body Probem" devido a Hallan e Rana. Para
isso apresentamos definições e resultados básicos sobre sistemas Hamiltonianos tais como
estabilidade de equilíbrios de sistemas Hamiltonianos lineares. Enunciamos o problema
restrito dos três corpos e mostramos alguns resultados clássicos do problema. Por fim
apresentamos o problema de Robe e discutimos os principais resultados usando a teoria
de sistemas Hamiltonianos.
|
3 |
Configurações centrais no problema restrito dos 4-corpos no planoFernandes Barros, Jean 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T18:28:23Z (GMT). No. of bitstreams: 2
arquivo4246_1.pdf: 1330348 bytes, checksum: 1a7b0bc74eca2991f866660cf076d055 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2008 / Universidade Estadual de Feira de Santana / Neste trabalho de pesquisa encontram-se demonstrados de forma analítica os resultados numéricos, obtidos na década de 40, e confirmados, também, numericamente, por Simó, na década de 70. Até nosso trabalho, o melhor que se tinha, neste sentido, era a tese de doutorado de J. R. Gannaway, na Vanderbilt University, Nashville, Tennessee, U.S.A., 1981, intitulada ``Determination of all central configurations in the planar four-body problem with one inferior mass' ,
orientada por Arenstorf, na qual, usando métodos analíticos, demonstrou casos particulares de alguns resultados do Pedersen. Porém, a parte substancial do trabalho do Pedersen ainda estava sem demonstração analítica, principalmente, a parte referente à curva de degenerescência.
A intenção de Pedersen era contar o número de configurações centrais no Problema Restrito dos 4 Corpos no Plano (PR4CP). Para isso, Pedersen procurou saber, inicialmente, aonde o problema degenerava-se. E então, concluiu que as configurações centrais na condição de degenerescência formam uma curva fechada e simples no interior do triângulo equilátero, cujos vértices definem a solução Lagrangeana do problema.
No Capítulo 2, ocupamo-nos por descrever analiticamente esta curva. E como uma consequência, obtivemos a caracterização algébrica da condição de degenerescência, a qual torna nosso método eficaz. O nosso método é inspirado no trabalho de Vincent, cujo método diz respeito à separação de raízes de um polinômio. Conjuntamente ao método de Vincent, utilizamos: o Resultante de Polinômios, a Regra de Sinais de Descartes, o Teorema Fundamental sobre Polinômios Simétricos, as Fórmulas de Cardano e a Natureza das Raízes da Equação Cúbica. Para realizarmos os cálculos utilizamos o software MAPLE.
No Capítulo 3, demonstramos, por métodos analíticos, que as configurações centrais convexas (ver Teorema 18) e não-convexas exteriores ao triângulo (ver Teorema 19) são não-degeneradas. Estes teoremas são nossas primeiras contribuições ao PR4CP.
No Capítulo 4, mostramos, por métodos analíticos, que a curva de degenerescência é fechada e simples, em conformidade com os resultados numéricos de Pedersen. Além disso, obtivemos algo inédito: a curva de degenerescência é analítica (ver Capítulo 4, Seções 4.3 e 4.4). Estes resultados são mais uma das nossas contribuições ao PR4CP.
No capítulo 5, passamos a realizar a contagem do número de configurações no PR4CP. Inicialmente, mapeamos a curva de degenerescência no espaço dos parâmetros, mais precisamente, no interior do 2-simplexo. E verificamos que a curva mapeada é fechada e simples (ver Capítulo 5, Seção 5.1). Desta forma, utilizando o Teorema da Curva de Jordan e o Teorema da Aplicação Inversa, realizamos a contagem do número de configurações centrais no PR4CP (ver
Capítulo 5, Seção 5.2)
|
Page generated in 0.0738 seconds