• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 80
  • 80
  • 18
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Wavelet domain partition-based signal processing with applications to image denoising and compression

Kim, Il-Ryeol. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: Kenneth E. Barner, Dept. of Electrical and Computer Engineering. Includes bibliographical references.
42

Multi-scale edge-guided image gap restoration

Langari, Bahareh January 2016 (has links)
The focus of this research work is the estimation of gaps (missing blocks) in digital images. To progress the research two main issues were identified as (1) the appropriate domains for image gap restoration and (2) the methodologies for gap interpolation. Multi-scale transforms provide an appropriate framework for gap restoration. The main advantages are transformations into a set of frequency and scales and the ability to progressively reduce the size of the gap to one sample wide at the transform apex. Two types of multi-scale transform were considered for comparative evaluation; 2-dimensional (2D) discrete cosines (DCT) pyramid and 2D discrete wavelets (DWT). For image gap estimation, a family of conventional weighted interpolators and directional edge-guided interpolators are developed and evaluated. Two types of edges were considered; ‘local’ edges or textures and ‘global’ edges such as the boundaries between objects or within/across patterns in the image. For local edge, or texture, modelling a number of methods were explored which aim to reconstruct a set of gradients across the restored gap as those computed from the known neighbourhood. These differential gradients are estimated along the geometrical vertical, horizontal and cross directions for each pixel of the gap. The edge-guided interpolators aim to operate on distinct regions confined within edge lines. For global edge-guided interpolation, two main methods explored are Sobel and Canny detectors. The latter provides improved edge detection. The combination and integration of different multi-scale domains, local edge interpolators, global edge-guided interpolators and iterative estimation of edges provided a variety of configurations that were comparatively explored and evaluated. For evaluation a set of images commonly used in the literature work were employed together with simulated regular and random image gaps at a variety of loss rate. The performance measures used are the peak signal to noise ratio (PSNR) and structure similarity index (SSIM). The results obtained are better than the state of the art reported in the literature.
43

Computationally Efficient Video Restoration for Nyquist Sampled Imaging Sensors Combining an Affine-Motion Based Temporal Kalman Filter and Adaptive Wiener Filter

Rucci, Michael 05 June 2014 (has links)
No description available.
44

Mapping individual trees from airborne multi-sensor imagery

Lee, Juheon January 2016 (has links)
Airborne multi-sensor imaging is increasingly used to examine vegetation properties. The advantage of using multiple types of sensor is that each detects a different feature of the vegetation, so that collectively they provide a detailed understanding of the ecological pattern. Specifically, Light Detection And Ranging (LiDAR) devices produce detailed point clouds of where laser pulses have been backscattered from surfaces, giving information on vegetation structure; hyperspectral sensors measure reflectances within narrow wavebands, providing spectrally detailed information about the optical properties of targets; while aerial photographs provide high spatial-resolution imagery so that they can provide more feature details which cannot be identified from hyperspectral or LiDAR intensity images. Using a combination of these sensors, effective techniques can be developed for mapping species and inferring leaf physiological processes at ITC-level. Although multi-sensor approaches have revolutionised ecological research, their application in mapping individual tree crowns is limited by two major technical issues: (a) Multi-sensor imaging requires all images taken from different sensors to be co-aligned, but different sensor characteristics result in scale, rotation or translation mismatches between the images, making correction a pre-requisite of individual tree crown mapping; (b) reconstructing individual tree crowns from unstructured raw data space requires an accurate tree delineation algorithm. This thesis develops a schematic way to resolve these technical issues using the-state-of-the-art computer vision algorithms. A variational method, called NGF-Curv, was developed to co-align hyperspectral imagery, LiDAR and aerial photographs. NGF-Curv algorithm can deal with very complex topographic and lens distortions efficiently, thus improving the accuracy of co-alignment compared to established image registration methods for airborne data. A graph cut method, named MCNCP-RNC was developed to reconstruct individual tree crowns from fully integrated multi-sensor imagery. MCNCP-RNC is not influenced by interpolation artefacts because it detects trees in 3D, and it detects individual tree crowns using both hyperspectral imagery and LiDAR. Based on these algorithms, we developed a new workflow to detect species at pixel and ITC levels in a temperate deciduous forest in the UK. In addition, we modified the workflow to monitor physiological responses of two oak species with respect to environmental gradients in a Mediterranean woodland in Spain. The results show that our scheme can detect individual tree crowns, find species and monitor physiological responses of canopy leaves.
45

A Medical Image Processing And Analysis Framework

Cevik, Alper 01 February 2011 (has links) (PDF)
Medical image analysis is one of the most critical studies in field of medicine, since results gained by the analysis guide radiologists for diagnosis, treatment planning, and verification of administered treatment. Therefore, accuracy in analysis of medical images is at least as important as accuracy in data acquisition processes. Medical images require sequential application of several image post-processing techniques in order to be used for quantification and analysis of intended features. Main objective of this thesis study is to build up an application framework, which enables analysis and quantification of several features in medical images with minimized input-dependency over results. Intended application targets to present a software environment, which enables sequential application of medical image processing routines and provides support for radiologists in diagnosis, treatment planning and treatment verification phases of neurodegenerative diseases and brain tumors / thus, reducing the divergence in results of operations applied on medical images. In scope of this thesis study, a comprehensive literature review is performed, and a new medical image processing and analysis framework - including modules responsible for automation of separate processes and for several types of measurements such as real tumor volume and real lesion area - is implemented. Performance of the fully-automated segmentation module is evaluated with standards introduced by Neuro Imaging Laboratory, UCLA / and the fully-automated registration module with Normalized Cross-Correlation metric. Results have shown a success rate above 90 percent for both of the modules. Additionally, a number of experiments have been designed and performed using the implemented application. It is expected for an accurate, flexible, and robust software application to be accomplished on the basis of this thesis study, and to be used in field of medicine as a contributor by even non-engineer professionals.
46

Real time maze traversal /

Spina, Robert. January 1989 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1989. / Includes bibliographical references (leaf 85).
47

A biologically inspired optical flow system for motion detection and object identification

Rijhwani, Vishal. January 2007 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 7, 2008) Includes bibliographical references.
48

Error resilience in JPEG2000 /

Natu, Ambarish Shrikrishna. January 2003 (has links)
Thesis (M.E.)--University of New South Wales, 2003. / Also available online.
49

CMOS image sensor with focal plane SPIHT image compression

Lin, Zhiqiang. January 1900 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2007. / Title from title screen (site viewed July 22, 2008). PDF text: viii, 127 p. : ill. (some col.) ; 2 Mb. UMI publication number: AAT 3296996. Includes bibliographical references. Also available in microfilm and microfiche formats.
50

Statistical semantic analysis of spatio-temporal image sequences /

Luo, Ying, January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 99-105).

Page generated in 0.1066 seconds