• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 80
  • 80
  • 18
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Expert object recognition in video /

McEuen, Matt. January 2005 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2005. / Typescript. Includes bibliographical references (p. 91-93).
52

Illumination Recovery For Optical Microscopy

Brookshire, Charles Thomas 15 June 2020 (has links)
No description available.
53

Towards clearer paths: Addressing camera obstructions in autonomous vehicles through neural networks

Harvel, Nicholas J. 10 May 2024 (has links) (PDF)
This study addresses the challenge of lens obfuscations in off-road autonomous vehicles, which compromise the essential visual inputs for safe navigation. Using a tiered approach, the research employs neural network architectures for preliminary image classification, semantic segmentation, and image-to-image translation to rectify obscured visual inputs. Initial classification using MobileNetV2 sets the stage for U-Net-driven semantic segmentation to identify obfuscated regions, followed by a modified Pix-to-Pix model for image restoration. The evaluation showcases promising results in improving visual clarity, marking a significant stride towards enhancing autonomous vehicle operational robustness in off-road environments. This work lays a foundation for future explorations into advanced neural network architectures for real-time implementations in off-road terrains.
54

Shell-based geometric image and video inpainting

Hocking, Laird Robert January 2018 (has links)
The subject of this thesis is a class of fast inpainting methods (image or video) based on the idea of filling the inpainting domain in successive shells from its boundary inwards. Image pixels (or video voxels) are filled by assigning them a color equal to a weighted average of either their already filled neighbors (the ``direct'' form of the method) or those neighbors plus additional neighbors within the current shell (the ``semi-implicit'' form). In the direct form, pixels (voxels) in the current shell may be filled independently, but in the semi-implicit form they are filled simultaneously by solving a linear system. We focus in this thesis mainly on the image inpainting case, where the literature contains several methods corresponding to the {\em direct} form of the method - the semi-implicit form is introduced for the first time here. These methods effectively differ only in the order in which pixels (voxels) are filled, the weights used for averaging, and the neighborhood that is averaged over. All of them are very fast, but at the same time all of them leave undesirable artifacts such as ``kinking'' (bending) or blurring of extrapolated isophotes. This thesis has two main goals. First, we introduce new algorithms within this class, which are aimed at reducing or eliminating these artifacts, and also target a specific application - the 3D conversion of images and film. The first part of this thesis will be concerned with introducing 3D conversion as well as Guidefill, a method in the above class adapted to the inpainting problems arising in 3D conversion. However, the second and more significant goal of this thesis is to study these algorithms as a class. In particular, we develop a mathematical theory aimed at understanding the origins of artifacts mentioned. Through this, we seek is to understand which artifacts can be eliminated (and how), and which artifacts are inevitable (and why). Most of the thesis is occupied with this second goal. Our theory is based on two separate limits - the first is a {\em continuum} limit, in which the pixel width →0, and in which the algorithm converges to a partial differential equation. The second is an asymptotic limit in which h is very small but non-zero. This latter limit, which is based on a connection to random walks, relates the inpainted solution to a type of discrete convolution. The former is useful for studying kinking artifacts, while the latter is useful for studying blur. Although all the theoretical work has been done in the context of image inpainting, experimental evidence is presented suggesting a simple generalization to video. Finally, in the last part of the thesis we explore shell-based video inpainting. In particular, we introduce spacetime transport, which is a natural generalization of the ideas of Guidefill and its predecessor, coherence transport, to three dimensions (two spatial dimensions plus one time dimension). Spacetime transport is shown to have much in common with shell-based image inpainting methods. In particular, kinking and blur artifacts persist, and the former of these may be alleviated in exactly the same way as in two dimensions. At the same time, spacetime transport is shown to be related to optical flow based video inpainting. In particular, a connection is derived between spacetime transport and a generalized Lucas-Kanade optical flow that does not distinguish between time and space.
55

Correspond?ncia est?reo usando imagens em multiresolu??o com profundidade vari?vel

Medeiros, Marcos Dumay de 18 December 2006 (has links)
Made available in DSpace on 2014-12-17T14:55:32Z (GMT). No. of bitstreams: 1 MarcosDM_capa_ate_pag07.pdf: 5340923 bytes, checksum: 475069211667569a40c60f5e4bdc1e5a (MD5) Previous issue date: 2006-12-18 / We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time / Para acelerar o rnatching em sistemas de vis?o est?reo ? proposta uma abordagem multi-resolu??o, coarse-to-fine, variando a profundidade do nivel inicial para cada pixel da imagem. A t?cnica proposta tem o potencial de atenuar diversos problemas do algoritmo com profundidade constante, tornando possivel reduzir o n?mero de erros ou o n?mero de compara??es necess?rias para obter resultados semelhantes. Para demonstrar a efici?ncia do m?todo, foram realizados v?rios experimentos, incluindo compara??o com a t?cnica tradicional de correla??o simples, na qual o rnatching usando imagens em multi-resolu??o com profundidade vari?vel obteve resultados superiores com um menor tempo de processamento
56

Efficient Processing of Corneal Confocal Microscopy Images. Development of a computer system for the pre-processing, feature extraction, classification, enhancement and registration of a sequence of corneal images.

Elbita, Abdulhakim M. January 2013 (has links)
Corneal diseases are one of the major causes of visual impairment and blindness worldwide. Used for diagnoses, a laser confocal microscope provides a sequence of images, at incremental depths, of the various corneal layers and structures. From these, ophthalmologists can extract clinical information on the state of health of a patient’s cornea. However, many factors impede ophthalmologists in forming diagnoses starting with the large number and variable quality of the individual images (blurring, non-uniform illumination within images, variable illumination between images and noise), and there are also difficulties posed for automatic processing caused by eye movements in both lateral and axial directions during the scanning process. Aiding ophthalmologists working with long sequences of corneal image requires the development of new algorithms which enhance, correctly order and register the corneal images within a sequence. The novel algorithms devised for this purpose and presented in this thesis are divided into four main categories. The first is enhancement to reduce the problems within individual images. The second is automatic image classification to identify which part of the cornea each image belongs to, when they may not be in the correct sequence. The third is automatic reordering of the images to place the images in the right sequence. The fourth is automatic registration of the images with each other. A flexible application called CORNEASYS has been developed and implemented using MATLAB and the C language to provide and run all the algorithms and methods presented in this thesis. CORNEASYS offers users a collection of all the proposed approaches and algorithms in this thesis in one platform package. CORNEASYS also provides a facility to help the research team and Ophthalmologists, who are in discussions to determine future system requirements which meet clinicians’ needs. / The data and image files accompanying this thesis are not available online.
57

A new approach to automatic saliency identification in images based on irregularity of regions

Al-Azawi, Mohammad Ali Naji Said January 2015 (has links)
This research introduces an image retrieval system which is, in different ways, inspired by the human vision system. The main problems with existing machine vision systems and image understanding are studied and identified, in order to design a system that relies on human image understanding. The main improvement of the developed system is that it uses the human attention principles in the process of image contents identification. Human attention shall be represented by saliency extraction algorithms, which extract the salient regions or in other words, the regions of interest. This work presents a new approach for the saliency identification which relies on the irregularity of the region. Irregularity is clearly defined and measuring tools developed. These measures are derived from the formality and variation of the region with respect to the surrounding regions. Both local and global saliency have been studied and appropriate algorithms were developed based on the local and global irregularity defined in this work. The need for suitable automatic clustering techniques motivate us to study the available clustering techniques and to development of a technique that is suitable for salient points clustering. Based on the fact that humans usually look at the surrounding region of the gaze point, an agglomerative clustering technique is developed utilising the principles of blobs extraction and intersection. Automatic thresholding was needed in different stages of the system development. Therefore, a Fuzzy thresholding technique was developed. Evaluation methods of saliency region extraction have been studied and analysed; subsequently we have developed evaluation techniques based on the extracted regions (or points) and compared them with the ground truth data. The proposed algorithms were tested against standard datasets and compared with the existing state-of-the-art algorithms. Both quantitative and qualitative benchmarking are presented in this thesis and a detailed discussion for the results has been included. The benchmarking showed promising results in different algorithms. The developed algorithms have been utilised in designing an integrated saliency-based image retrieval system which uses the salient regions to give a description for the scene. The system auto-labels the objects in the image by identifying the salient objects and gives labels based on the knowledge database contents. In addition, the system identifies the unimportant part of the image (background) to give a full description for the scene.
58

Efficient processing of corneal confocal microscopy images : development of a computer system for the pre-processing, feature extraction, classification, enhancement and registration of a sequence of corneal images

Elbita, Abdulhakim Mehemed January 2013 (has links)
Corneal diseases are one of the major causes of visual impairment and blindness worldwide. Used for diagnoses, a laser confocal microscope provides a sequence of images, at incremental depths, of the various corneal layers and structures. From these, ophthalmologists can extract clinical information on the state of health of a patient’s cornea. However, many factors impede ophthalmologists in forming diagnoses starting with the large number and variable quality of the individual images (blurring, non-uniform illumination within images, variable illumination between images and noise), and there are also difficulties posed for automatic processing caused by eye movements in both lateral and axial directions during the scanning process. Aiding ophthalmologists working with long sequences of corneal image requires the development of new algorithms which enhance, correctly order and register the corneal images within a sequence. The novel algorithms devised for this purpose and presented in this thesis are divided into four main categories. The first is enhancement to reduce the problems within individual images. The second is automatic image classification to identify which part of the cornea each image belongs to, when they may not be in the correct sequence. The third is automatic reordering of the images to place the images in the right sequence. The fourth is automatic registration of the images with each other. A flexible application called CORNEASYS has been developed and implemented using MATLAB and the C language to provide and run all the algorithms and methods presented in this thesis. CORNEASYS offers users a collection of all the proposed approaches and algorithms in this thesis in one platform package. CORNEASYS also provides a facility to help the research team and Ophthalmologists, who are in discussions to determine future system requirements which meet clinicians’ needs.
59

Local Phase Coherence Measurement for Image Analysis and Processing

Hassen, Rania Khairy Mohammed January 2013 (has links)
The ability of humans to perceive significant pattern and structure of an image is something which humans take for granted. We can recognize objects and patterns independent of changes in image contrast and illumination. In the past decades, it has been widely recognized in both biology and computer vision that phase contains critical information in characterizing the structures in images. Despite the importance of local phase information and its significant success in many computer vision and image processing applications, the coherence behavior of local phases at scale-space is not well understood. This thesis concentrates on developing an invariant image representation method based on local phase information. In particular, considerable effort is devoted to study the coherence relationship between local phases at different scales in the vicinity of image features and to develop robust methods to measure the strength of this relationship. A computational framework that computes local phase coherence (LPC) intensity with arbitrary selections in the number of coefficients, scales, as well as the scale ratios between them has been developed. Particularly, we formulate local phase prediction as an optimization problem, where the objective function computes the closeness between true local phase and the predicted phase by LPC. The proposed framework not only facilitates flexible and reliable computation of LPC, but also broadens the potentials of LPC in many applications. We demonstrate the potentials of LPC in a number of image processing applications. Firstly, we have developed a novel sharpness assessment algorithm, identified as LPC-Sharpness Index (LPC-SI), without referencing the original image. LPC-SI is tested using four subject-rated publicly-available image databases, which demonstrates competitive performance when compared with state-of-the-art algorithms. Secondly, a new fusion quality assessment algorithm has been developed to objectively assess the performance of existing fusion algorithms. Validations over our subject-rated multi-exposure multi-focus image database show good correlations between subjective ranking score and the proposed image fusion quality index. Thirdly, the invariant properties of LPC measure have been employed to solve image registration problem where inconsistency in intensity or contrast patterns are the major challenges. LPC map has been utilized to estimate image plane transformation by maximizing weighted mutual information objective function over a range of possible transformations. Finally, the disruption of phase coherence due to blurring process is employed in a multi-focus image fusion algorithm. The algorithm utilizes two activity measures, LPC as sharpness activity measure along with local energy as contrast activity measure. We show that combining these two activity measures result in notable performance improvement in achieving both maximal contrast and maximal sharpness simultaneously at each spatial location.
60

Local Phase Coherence Measurement for Image Analysis and Processing

Hassen, Rania Khairy Mohammed January 2013 (has links)
The ability of humans to perceive significant pattern and structure of an image is something which humans take for granted. We can recognize objects and patterns independent of changes in image contrast and illumination. In the past decades, it has been widely recognized in both biology and computer vision that phase contains critical information in characterizing the structures in images. Despite the importance of local phase information and its significant success in many computer vision and image processing applications, the coherence behavior of local phases at scale-space is not well understood. This thesis concentrates on developing an invariant image representation method based on local phase information. In particular, considerable effort is devoted to study the coherence relationship between local phases at different scales in the vicinity of image features and to develop robust methods to measure the strength of this relationship. A computational framework that computes local phase coherence (LPC) intensity with arbitrary selections in the number of coefficients, scales, as well as the scale ratios between them has been developed. Particularly, we formulate local phase prediction as an optimization problem, where the objective function computes the closeness between true local phase and the predicted phase by LPC. The proposed framework not only facilitates flexible and reliable computation of LPC, but also broadens the potentials of LPC in many applications. We demonstrate the potentials of LPC in a number of image processing applications. Firstly, we have developed a novel sharpness assessment algorithm, identified as LPC-Sharpness Index (LPC-SI), without referencing the original image. LPC-SI is tested using four subject-rated publicly-available image databases, which demonstrates competitive performance when compared with state-of-the-art algorithms. Secondly, a new fusion quality assessment algorithm has been developed to objectively assess the performance of existing fusion algorithms. Validations over our subject-rated multi-exposure multi-focus image database show good correlations between subjective ranking score and the proposed image fusion quality index. Thirdly, the invariant properties of LPC measure have been employed to solve image registration problem where inconsistency in intensity or contrast patterns are the major challenges. LPC map has been utilized to estimate image plane transformation by maximizing weighted mutual information objective function over a range of possible transformations. Finally, the disruption of phase coherence due to blurring process is employed in a multi-focus image fusion algorithm. The algorithm utilizes two activity measures, LPC as sharpness activity measure along with local energy as contrast activity measure. We show that combining these two activity measures result in notable performance improvement in achieving both maximal contrast and maximal sharpness simultaneously at each spatial location.

Page generated in 0.0664 seconds