Spelling suggestions: "subject:"aprocessing strategy"" "subject:"eprocessing strategy""
1 |
The Effects of Mood State and Intensity on Cognitive Processing ModesLamar, Marlys Camille 08 1900 (has links)
To investigate the effects of emotional arousal on information processing strategy, three different moods (sadness, anger, and happiness) were hypnotically induced at three different levels of intensity (high, medium, and low) in 29 male and female undergraduate students, while engaging them in a visual information processing task. Subjects were screened for hypnotic susceptibility and assigned to either a high susceptibility group or low susceptibility group to account for the attentional bias associated with this trait. All subjects were trained to access the three emotions at the three levels of intensity. During separate experimental sessions, subjects were hypnotized, and asked to access a mood and experience each level of intensity while being administered the Navon Design Discrimination Task, a measure of global and analytic visual information processing. Scores were derived for global processing, analytic processing, and a percentage of global to analytic processing for each level of mood and intensity. Two (hypnotic susceptibility) x 3 (emotion) x 3 (intensity level) repeated measures ANOVAs were computed on the global, analytic, and percentage scores. In addition, two separate ANCOVAs were computed on each dependent measure to account for the effects of handedness, and cognitive style. None of these analyses revealed significant main effects or interactions. The analysis of the percentage scores revealed a trend toward differences between the emotions, but in a direction opposite to that hypothesized. Hypnotic susceptibility does not appear to mediate global and analytic responses to the Navon visual information processing task when emotions are being experienced. Results regarding emotions and emotional intensity were discussed in terms of the problems with adequate control and manipulation of mood and intensity level. Difficulties with the Navon measure were also explored with regard to the exposure duration in the Navon task, and its adequacy in measuring shifts in information processing associated with transient mood states. Implications for future research were discussed.
|
2 |
Considerations in the practical implementation of a travelling wave cochlear implant processorDu Preez, Christiaan Cronje 10 August 2012 (has links)
Speech processing in the human cochlea introduces travelling waves on the basilar membrane.
These travelling waves have largely been ignored in most processing strategies. This
study implements a hydrodynamical model in a speech processing strategy in order to investigate
the neural spike train patterns for a travelling wave processing strategy. In cochlear implants
a trade-off remains between the simulation rate and the number of electrode channels.
This trade-off was investigated in the proposed travelling wave strategy. Taking into consideration
existing current spread and electrical stimulation models, predicted neural spike train
responses have shown that stimulating fewer channels (six and four) at stimulation rates of
2 400 pps and 3 600 pps gives better approximations of predicted normal hearing responses
for input frequencies of 200 Hz, 600 Hz and 1 kHz, compared to stimulating more channels at lower channel stimulation rates. The predicted neural spike train patterns suggest
that these resulting neural patterns might contain both spatial and temporal information that
could be extracted by the auditory system. For a frequency of 4 kHz the predicted neural
patterns for a channel-number stimulation-rate configuration of 2 - 7 200 pps suggested that
although there is no travelling wave delay information, the predicted neural patterns still contain
temporal information. The predicted ISI histograms show peaks at the input tone period
and multiples thereof, with clusters of spikes evident around the tone period in the predicted
spatio-temporal neural spike train patterns. Similar peaks at the tone period were observed
for calculated ISI histograms for predicted normal hearing neural patterns and measured neural
responses. The predicted spatio-temporal neural patterns for the input frequency of 200
Hz show the travelling wave delay with clusters of spikes at the tone period. This travelling
wave delay can also be seen from predicted normal hearing neural responses. The current
spread, however, shows a significant distortion effect around the characteristic frequency
place where the travelling wave delay increases rapidly. Spacing electrodes more closely
results in an increase in this distortion, with the nerve fibre threshold decreasing in adjacent
populations of nerve fibres, increasing the probability of firing. The current spread showed a
more limited distortion effect on travelling wave delays when electrodes were spaced across
the cochlea, at an electrode spacing of 6.08 mm. ISI histogram results also showed increased
peaks around the tone period and multiples thereof. These predicted neural spike train patterns
suggest that travelling waves in processing strategies, although mostly ignored, might
provide the auditory system with both the spatial and temporal information needed for better
pitch perception. / Dissertation (MEng)--University of Pretoria, 2012. / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
|
3 |
Small Angle Sensing/Measurement Using 'Pattern Imaging' Method - Few InvestigationsSuguna Sree, N 04 1900 (has links)
The present thesis concerns with a few investigations on sensing/measurement of small angle rotation/tilt using Pattern Imaging Method. The methodology involves looking at the tailored-objects located adjacent to the observer (CCD camera) through a mirror and extracts the angular position of the mirror from their images by processing the latter through object specific algorithm. Its principal advantage stems from the fact that small-angle measurement can be done using ambient light which is neither collimated nor filtered for single wavelength. This makes the associated optical configuration not only simple but also robust for the said application, in comparison to currently competing technologies based on Autocollimation and Interferometry.
The present thesis elaborates specifically four new Pattern-Designs proposed for tailoring the spatial-brightness of the objects. Introducing for the first time, processing algorithms based on ‘Modified Fringe-Processing Strategy’ and ‘Phase-Only-Correlation’, the investigations demonstrate enhanced performance for small angle measurement with all the proposed pattern designs. The first three designs for the pattern are evaluated for 1-D measurement through fringe processing approach while the fourth pattern design is evaluated for 2-D measurement through Phase-only-Correlation. The results of the investigations are utilized to propose, design and develop a novel optical inclinometer which can work with any of the proposed pattern designs as the object.
The first three pattern-designs rely upon sinusoidal modulation of the object surface and utilize three custom developed algorithms -Algorithm-A, Algorithm-B and Algorithm-C -to extract two quantities namely wrapped phase Δαw and unwrapped phase Δαuw , from the captured images. Each of these quantities will have an associated measurement range and accuracy corresponding to any of the three pattern designs. All measurements are carried out keeping the object/camera to mirror distance constant at 250 mm.
From wrapped phase measurement, all the three designs, each with pitch of 2mm for sinusoidal modulation and held at a distance of 250 mm from the mirror, have been found to facilitate reliable angle measurement over a range of 850 arc seconds with accuracy better than 1 arc second after curve fitting the experimentally obtained data.
From unwrapped phase measurement, the color coded as well as BCD coded composite patterns, when tested using five bands of sinusoidal modulation (with a pitch of 2mm) and held at a distance of 250 mm from the mirror, facilitated reliable angle measurement over a larger range of nearly 10 .
The 2-D angle measurement using fourth pattern-design and the Algorithm-D, facilitated measurement over a range of 10 with an accuracy of 9 arc seconds when the distance between the mirror and the pattern is held at 250 mm.
A comparison of the results from the present investigation with the best performance from other investigators reveals the following. The proposed modifications in the processing algorithms as well as the pattern designs help to achieve a measurement range of 750 arc seconds with accuracy better than 1 arc second from this method, with an object pattern whose lateral size is smaller by a factor of nearly 15. Such a size reduction in the object as well as the associated mirror would help to construct angle measuring instruments that work on this method more compactly.
The results of the investigation have been utilized to propose and demonstrate a novel prototype optical inclinometer which has been experimentally found to work in a range of 0.40 with accuracy nearly 6 arc seconds.
|
Page generated in 0.0761 seconds