• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles de sensibilité dans le cadre de la méthode de Monté-Carlo illustrations en transfert radiatif /

Roger, Maxime January 2007 (has links)
Reproduction de : Thèse de doctorat : Energétique et transferts : Toulouse, INPT : 2006. / Titre provenant de l'écran-titre. Bibliogr. 93 réf.
2

Étude approfondie de la structure interne du Soleil: héliosismologie et modèles fins incluant la ségrégation détaillée des éléments et les processus de transport

Richard, Olivier 18 May 1999 (has links) (PDF)
Au cours de cette thèse nous avons étudié différents aspects de la modélisation de la structure interne du Soleil. La précision atteinte avec l'héliosismologie permet de fortement contraindre les modèles solaires. Les meilleurs modèles standards (où la convection et la diffusion microscopique sont les seuls processus de transport pris en compte) reproduisent la vitesse du son du modèle sismique (obtenu par inversion des modes sismiques) avec un très bon accord (meilleur que 1%). Nous avons testé dans ce cadre l'influence d'une variation des grandeurs utilisées pour la calibration des modèles, compte-tenu de leur incertitude actuelle. Nous avons constaté que ces variations entraînent des modifications négligeables dans la comparaison avec le modèle sismique. Nous avons aussi étudié les effets du changement de l'équation d'état, des opacités, des taux de réactions nucléaires et de la composition chimique initiale dans les modèles. Pour notre meilleur modèle, calculé avec les données les plus récentes, l'écart avec la vitesse du son du modèle sismique est inférieur à 0.3%. Nous avons étudié la précision obtenue dans la détermination héliosismique de la fraction de masse d'hélium 4 dans la zone convective du Soleil. Nous avons aussi étudié les processus de transport susceptibles d'expliquer les abondances observées des éléments légers. Le mélange induit par la rotation permet de reproduire les contraintes chimiques tout en améliorant l'accord avec le modèle sismique. Dans tous ces modèles les flux de neutrinos obtenus sont plus importants que ceux observés. Nous avons testé l'effet d'un mélange dans le coeur du Soleil : les flux de neutrinos sont diminués mais l'accord avec le modèle sismique est dégradé. Cette étude tend à montrer que la solution au problème des neutrinos solaires se trouve plutôt en physique des particules.
3

Importance de la diffusion atomique et de ses conséquences hydrodynamiques sur la structure interne et les paramètres observationnels des étoiles / Importance of atomic diffusion and of its hydrodynamic consequences on internal structure and observational parameters of stars

Deal, Morgan 20 September 2016 (has links)
La diffusion atomique doit être prise en compte dans les modèles d'évolution stellaire car il s'agit d'une conséquence directe du fait que les étoiles sont des sphères auto-gravitantes composées d'un mélange de différents gaz (les éléments chimiques). L'équilibre des étoiles conduit à des gradients internes de pression, de densité et de température ainsi qu'à un transfert radiatif, l'ensemble produisant un effet sélectif sur les éléments (dans la plupart des cas dominé par la compétition entre le triage gravitationnel et les accélérations radiatives).Les interactions entre la diffusion atomique et les processus hydrodynamiques tels que la convection dynamique et la perte de masse sont étudiées depuis longtemps. Un processus important a cependant été oublié dans les modèles. Il s'agit de la convection double diffusive (ou thermohaline) induite par un gradient de μ instable, qui peut être produite par une accumulation locale d'éléments lourds à l'intérieur des étoiles due aux accélérations radiatives. Contrairement aux autres processus de mélange, il s'agit d'une conséquence directe de la diffusion atomique. Un effet similaire se produit à la base de la zone convective de surface en cas d'accrétion d’éléments lourds à la surface de l'étoile.Nous avons étudié la convection thermohaline induite par l'accrétion dans le cas du système 16 Cygni et les propriétés de ces deux étoiles avec le code TGEC. Nous avons inclus la prescription de Brown et al. 2013 pour la convection thermohaline. Nous avons ensuite calculé les fréquences d'oscillations de ces modèles à l'aide du code PULSE pour les comparer aux fréquences observées par Kepler. A partir de ces modèles, nous avons pu montrer qu'en accrétant 2/3 de la masse terrestre au début de la séquence principale (sur le modèle 16 Cyg B), la convection thermohaline induite par l'accrétion mélangeait l'étoile suffisamment profondément pour atteindre la zone de destruction du lithium et ainsi obtenir des abondances de lithium cohérentes avec les observations de 16 Cyg A et B.Nous avons étudié l'accumulation d’éléments lourds et l'effet de la convection thermohaline dans le cas des étoiles de type A. Dans ces étoiles, des abondances "particulières" (par rapport au soleil) ont été observées. Ceci est dû aux effets de la diffusion atomique qui sont très importants dans ces étoiles. Cependant, la diffusion atomique seule produit des variations d'abondances trop importantes et un moyen de reproduire les observations est de mélanger l'étoile assez profondément. Nous avons ensuite calculé des modèles incluant la diffusion atomique et la convection thermohaline en utilisant le code TGEC. Nous avons montré que ce processus pouvait modifier la structure interne de ces étoiles, et aussi les abondances de surface. Nous avons aussi inclus la convection thermohaline et l'accrétion dans le code de Montréal/Montpellier. Nous avons modifié plusieurs parties de ce code afin de pouvoir faire des comparaisons avec le TGEC pour comparer les résultats. Les résultats obtenus sont très similaires.Nous avons aussi déterminé les paramètres de l'étoile 94 Ceti à partir d'observations obtenues avec un instrument au sol. Cette étoile à une masse de 1.44 MΘ et est une bonne cible pour étudier l'effet des accélérations radiatives (qui ont un effet non négligeable pour des masses supérieures à 1.2 MΘ). Nous avons aussi comparé des modèles incluant des atmosphères complets afin d'en déterminer l'impact sur les fréquences.Nous avons travaillé sur les étoiles du halo pauvres en métaux pour lesquelles est observé une dispersion inexpliquée des abondances de lithium pour les métallicité très faible. Nous avons étudié la possibilité d'une accrétion sur ces étoiles qui pourrait produire de la convection thermohaline et détruire du lithium. / Atomic diffusion must be taken into account in the computations of stellar structure and evolution as it is a direct consequence of the fact that stars are self-gravitating spheres composed of a mixture of different gases (the chemical elements). The stellar equilibrium leads to internal gradients of pressure, density and temperature as well as an upward radiative transfer which produces a selective effect on the elements (in most cases dominated by the competition between gravitational settling and radiative acceleration).The interactions between atomic diffusion and well-known hydrodynamical processes like dynamical convection and mass loss have been studied for a long time. An important process was however forgotten in these computations. This is the double-diffusive (or fingering or thermohaline) convection induced by unstable μ-gradients, which can be produced by the local accumulation of heavy elements inside stars due to radiative acceleration. Contrary to the other hydrodynamical processes, fingering convection is not arbitrarily added in the computations. It is directly induced by atomic diffusion itself and cannot be avoided. It is thus very important to add this hydrodynamical process in stellar evolution modelling, which has never been done before our work. A similar effect occurs below the convective zone in case of accretion of heavy matter onto a star.We studied the accretion-induced fingering convection in the case of the stellar system 16 Cygni. We studied the properties of these two stars by computing models with the Toulouse Geneva Evolution Code (TGEC). We included the Brown et al. 2013 prescription for the computations of fingering convection in the code. We computed oscillation frequencies of these models using the PULSE code to compare it with Kepler observations. We found that if 2/3 of Earth mass is accreted at the beginning of the main sequence (on 16 Cyg B model), the accretion-induced fingering convection mixes the star deep enough to destroy the lithium and obtain the observed difference between 16 Cyg A and B.We studied the heavy element accumulation and the induced fingering convection in the case of Am stars. In these stars, peculiar surface abundances are observed (compared to the sun). This peculiarity is related to the effect of atomic diffusion, very important in these types of stars. However, atomic diffusion alone leads to abundance variations which are too large and one way to reproduce the observed abundance quantitatively is to assume mixing deep enough inside the star. We computed models including atomic diffusion (with radiative acceleration) and fingering convection with this prescription using the TGEC code. We find than this process may change the internal structure of the stars, and also the surface abundances. We also included fingering convection and the accretion process in the Montreal/Montpellier code. We modified some parts of this code (e.g. turbulence profiles) to compare the results obtained with the two codes. We computed some models and I found that the results are quite similar.We determined the stellar parameters of the star 94 Ceti (by using similar seismic computations as for 16 Cyg A and B) using ground-based observations. This star has a mass of 1.44 MΘ and is a good target to study the effect of radiative accelerations (which occur for masses larger than 1.2-1.3 MΘ). We also compared models with full atmosphere with the observations to determine the impact on oscillation frequencies.We worked on metal poor halo stars for which a dispersion of lithium surface abundance is observed for very small metallicities. We studied the possibility of an accretion of matter that can trigger fingering convection and destroy lithium.
4

Etude de la dynamique des electrons en presence de fortes densites de courant

Garcia, Geraldine 13 November 2007 (has links) (PDF)
L'objet de notre étude est la dynamique des plasmas collisionnels soumis à un champ électrique aligné au champ magnétique en bordure d'aurore. De fortes densités de courant aligné ont été mises en évidence à la fois par des modèles électrodynamiques et des mesures satellites ou radars. Différents auteurs et différents types de travaux (expérimentaux ou de modélisation) montrent que les densités de courant peuvent atteindre des centaines de μA.m−2 en bordure des arcs auroraux. Ces densités de courant sont à l'origine de multiples phénomènes tels que : le chauffage du plasma ionosphérique, l'échappement des ions et le développement d'instabilités. Ces fortes densités de courant impliquent la présence d'un champ électrique parallèle qui peut entraîner des effets cinétiques tels que la création d'électrons runaway. L'étude des électrons runaway n'est pas nouvelle et intervient dans différents domaines tels que la fusion nucléaire, le chauffage de la couronne solaire ou les phénomènes lumineux transitoires tels que les sprites. Dans notre cas, nous nous intéressons à l'ionosphère terrestre où l'étude des électrons runaway est un sujet très novateur. <br />Ainsi, nous allons étudier la dynamique des électrons portant ces courants très intenses. Pour cela, nous considérons un ensemble d'électrons se déplaçant à travers un gaz ionosphérique d'ions et de neutres et soumis à un champ électrique aligné au champ magnétique. Nous avons développé un modèle cinétique de collisions, incluant les collisions électrons/électrons, électrons/ions et électrons/neutres. Nous utilisons une approche Fokker-Planck afin de décrire les collisions binaires entre les particules chargées (interactions à longue portée). L'opérateur de collisions comporte deux parties : l'équation de Langevin pour les collisions électrons/électrons et électrons/ions et la méthode de Monte-Carlo avec une approche "collision nulle" pour les collisions électrons/neutres. Nous donnons un exemple de retour à l'équilibre afin de tester ces opérateurs de collisions et d'étudier l'impact des différents termes (les collisions électrons/électrons et électrons/ions d'une part et les collisions électrons/neutres d'autre part). <br />Tout d'abord, nous considérons un champ électrique constant au cours du temps. Dans ce test, les électrons sont déplacés uniquement selon z, la direction parallèle au champ electrique et au champ magnétique. Nous constatons alors que les fonctions de distribution ne sont plus maxwelliennes et que des électrons runaway sont créés. Ces électrons représentent 20% de la densité totale et ce sont eux qui portent le courant. Cependant, nous remarquons que nous ne conservons pas la divergence du courant nulle.<br />Nous introduisons alors des modifications majeures telles qu'une rétroaction sur le champ électrique ou la résolution des équations fluides afin de tenir compte de l'évolution des moments de la fonction de distribution des ions. Nous observons que les fonctions de distribution des électrons restent non maxwelliennes. Des électrons suprathermiques sont créés et portent le courant. En effet, la population correspondant au coeur de la distribution reste au repos. Comme ces électrons subissent moins de collisions, ils augmentent la conductivité du plasma.<br />Enfin, nous avons réalisé une étude paramétrique afin d'étudier l'influence des divers paramètres d'entrée (densité de courant, densité électronique, temps de montée du courant...) sur les fonctions de distribution. Pour cela, nous ajustons deux maxwelliennes qui correspondent au coeur de la distribution et à la population suprathermique. Nous mettons en avant le fait que le temps de montée du courant, c'est-à-dire le temps nécessaire pour atteindre la valeur maximale du courant, est un paramètre clef. En effet, augmenter ce temps influe essentiellement sur les températures : la température moyenne des électrons, mais aussi celle des électrons de la population représentant le coeur de la distribution et de la population suprathermique. La densité de courant joue également un rôle primordial.Augmenter la densité de courant augmente l'ensemble des paramètres : la densité et la vitesse moyenne des électrons runaway et les températures électroniques des deux populations. L'étude sur la densité a révélé que, plus la densité électronique totale augmente, plus la température et la vitesse moyenne des électrons suprathermiques diminuent.
5

Viscosity and Microscopic Chaos: The Helfand-moment Approach (Viscosité et Chaos Microscopique: Approche par le Moment de Helfand)

Viscardy, Sébastien 21 September 2005 (has links)
<p align="justify"> Depuis les premiers développements de la physique statistique réalisés au 19ème siècle, nombreux ont été les travaux dédiés à la relation entre les processus macroscopiques em>irréversibles</em>(tels que les phénomènes de transport) et les propriétés de la dynamique <em>réversible</em> des atomes et des molécules. Depuis deux décennies, l'<em>hypothèse du chaos microscopique</em> nous en apporte une plus grande compréhension. Dans cette thèse, nous nous intéressons plus particulièrement aux propriétés de <em>viscosité</em>. <br /><br /> Dans ce travail, nous considérons des systèmes périodiques de particules en interaction. Nous proposons une nouvelle méthode de calcul de la viscosité valable pour tous systèmes périodiques, quel que soit le potentiel d'interaction considéré. Cette méthode est basée sur la formule dérivée par Helfand exprimant la viscosité en fonction de la variance du <em>moment de Helfand</em> croissant linéairement dans le temps.<br /><br /> Dans les années nonante, il a été démontré qu'un système composé de seulement deux particules présente déjà de la viscosité. Les deux disques <em>durs</em> interagissent en collisions élastiques dans un domaine carré ou hexagonal avec des conditions aux bords périodiques. Nous appliquons notre méthode de calcul des propriétés de viscosité dans les deux réseaux. Nous donnons également une explication qualitative des résultats obtenus. <br /><br /> L'étude de la relation entre les propriétés de viscosité et les grandeurs du chaos microscopique représente l'une des principales tâches de cette thèse. Dans ce contexte, le <em>formalisme du taux d'échappement</em> joue un rôle majeur. Ce formalisme établit une relation directe entre cette grandeur et la viscosité. Nous étudions numériquement cette relation et la comparaison avec les résultats obtenus par notre méthode sont excellents. <br /><br /> D'autre part, le formalisme du taux d'échappement suppose l'existence d'un <em>répulseur fractal</em>. Après avoir mis en évidence son existence, nous appliquons le formalisme proposant une formule exprimant la viscosité en termes de l'exposant de Lyapunov du système (mesurant le caractère chaotique de la dynamique)et de la dimension fractale du répulseur. L'étude numérique de cette relation dans le modèle à deux disques durs est réalisée avec succès et sont en excellent accord avec les relations obtenus précédemment. <br /><br /> Enfin, nous nous penchons sur les systèmes composés de <em>N</em> disques durs ou sphères dures. Après une étude de l'équation d'état et des propriétés chaotiques, nous avons exploré les propriétés de viscosité dans ces systèmes. Les données numériques obtenues sont en très bon accord avec les prévisions théoriques d'Enskog. D'autre part, nous avons utilisé notre méthode de calcul de la viscosité dans des systèmes de Lennard-Jones. De plus, nous avons proposé une méthode analogue pour le calcul numérique de la <em>conduction thermique</em>. Nos résultats sont en très bon accord avec ceux obtenus par la méthode de Green-Kubo. </p> <br /><br /> <p align="justify"> In this thesis, we first devote a section on the history of the concept of irreversibility; of the hydrodynamics, branch of physics in which the viscosity appears; of the kinetic theory of gases establishing relationships between the microscopic dynamics and macroscopic processes like viscosity; and, finally, the interest brought in statistical mechanics of irreversible processes by the theory of chaos, more precisely, the microscopic chaos. We propose a method based on the Helfand moment in order to calculate the viscosity properties in systems of particles with periodic boundary conditions. We apply this method to the simplest system in which viscosity already exists: the two-hard-disk model. The escape-rate formalism, establishing a direct relation between chaotic quantities of the microscopic dynamics (e.g. Lyapunov exponents, fractal dimensions, etc.), is applied in this system. The results are in excellent agreement with those obtained by our Helfand-moment method. We extend the calculation of the viscosity properties to systems with more than two hard balls. Finally, we compute viscosity as well as thermal conductivity thanks to our own method also based on the Helfand moment. </p>
6

Membranes hors d'équilibre : échanges et transport actif

Girard, Philippe 01 March 2004 (has links) (PDF)
Les membranes biologiques sont le centre de nombreux phénomènes hors équilibres qui sont essentiels pour les cellules. Pour une description physique plus complète des biomembranes, nous avons étudié, théoriquement et expérimentalement, les effets de deux processus hors équilibres sur les propriétés de membranes artificielles. Premièrement, nous avons développé une théorie, complètement covariante, des membranes qui sont soumises à des échanges de matériels biologiques (i.e. lipides, enzymes et protéines membranaires). Avec cette description, l'étude des fluctuations de telles membranes nous a montré que, sous certaines conditions, celles-ci peuvent devenir instables en développant un long et fin tubule qui présente certaines similitudes morphologiques avec les membranes des organelles. Nous avons appliqué ce modèle avec succès pour décrire le phénomène de fusion observé expérimentalement entre de petites et de grosses vésicules chargées mimant le phénomène d'endocytose. Deuxièmement, nous avons étudié les effets de l'activité des protéines membranaires sur le spectre des fluctuations. Un modèle théorique qui prend en compte l'activité hors-équilibre des protéines prévoit une amplification des fluctuations lorsqu'un bruit hors-équilibre s'ajoute au bruit thermique. Pour tester expérimentalement ces prévisions, nous avons reconstitué une pompe ATP-dépendante, l'ATPase-Ca2+ dans des vésicules géantes unilamellaires. Puis grâce à la technique d'aspiration par micropipette, nous avons mis en évidence à la fois une décroissance du module de courbure liée à la présence des protéines dans la membrane, et une augmentation des fluctuations dans les membranes actives.
7

Théorie et simulation de l'interaction des impulsions laser ultracourtes à flux modéré avec un solide métallique

Colombier, Jean-Philippe 07 October 2005 (has links) (PDF)
Les systèmes laser ultracourts concentrent une énergie de quelques microjoules dans une impulsion d'une centaine de femtosecondes, de telle sorte que les intensités atteignent 10^12 à 10^15 W/cm^2. Lors de l'irradiation d'un métal, la matière est éjectée du milieu d'origine avec une très grande précision, ce qui confère au système des qualités indéniables pour des applications industrielles. Dans ce travail, nous avons adopté une démarche théorique en proposant une modélisation et une simulation des effets engendrés par ce type d'impulsion.<br /><br /> La mise en mouvement ultrarapide des électrons libres insuffle une dynamique puissante de destruction du métal. Des modèles optiques, thermiques et hydrodynamiques adaptés, réalisant la transition entre l'état dégénéré de la matière condensée vers un régime plasma chaud non-dégénéré, sont ici développés. Nous les avons insérés dans un code Lagrangien de simulation hydrodynamique. Nous montrons que des états thermodynamiques extrêmes, hors d'équilibre, peuvent être engendrés et nous avons comparé les taux d'ablation obtenus aux résultats d'expérience. <br /><br /> Une conductivité électrique hors d'équilibre est également développée afin de rendre compte des effets produits par la dynamique électronique sur les propriétés d'absorption optique. Plusieurs types d'expériences numériques, impliquant notamment des dispositifs pompe-sonde, sont ensuite exposés afin d'améliorer notre compréhension des processus de transport (électron-électron et électron-phonon) dans ce régime. Nous avons enfin appliqué cette modélisation aux effets produits par une impulsion mise en forme temporellement afin d'optimiser les expériences d'ablation.
8

Membranes hors d'équilibre : échanges et transport actif

Girard, Philippe 01 March 2004 (has links) (PDF)
Les membranes biologiques sont le centre de nombreux phénomènes hors équilibres qui sont essentiels pour les cellules. Pour une description physique plus complète des biomembranes, nous avons étudié, théoriquement et expérimentalement, les effets de deux processus hors équilibres sur les propriétés de membranes artificielles. Premièrement, nous avons développé une théorie, complètement covariante, des membranes qui sont soumises à des échanges de matériels biologiques (i.e. lipides, enzymes et protéines membranaires). Avec cette description, l'étude des fluctuations de telles membranes nous a montré que, sous certaines conditions , celles-ci peuvent devenir instables en développant un long et fin tubule qui présente certaines similitudes morphologiques avec les membranes des organelles. Nous avons appliqué ce modèle avec succès pour décrire le phénomène de fusion observé expérimentalement entre de petites et de grosses vésicules chargées mimant le phénomène d'endocytose. Deuxièmement, nous avons étudié les effets de l'activité des protéines membranaires sur le spectre des fluctuations. Un modèle théorique qui prend en compte l'activité hors équilibre des protéines prévoit une amplification des fluctuations lorsqu'un bruit hors équilibre s'ajoute au bruit thermique. Pour tester expérimentalement ces prévisions, il a fallu reconstituer une pompe ATP-dépendante, l'ATPase-Calcium dans des vésicules géantes unilamellaires. Puis grâce à la technique d'aspiration par micropipette, nous avons mis en évidence à la fois une décroissance du module de courbure liée à la présence des protéines dans la membrane, et une augmentation des fluctuations dans les membranes actives.
9

Viscosity and microscopic chaos: the Helfand-moment approach / Viscosité et chaos mircroscopique: approche par le moment de Helfand

Viscardy, Sébastien 21 September 2005 (has links)
<p align="justify"><p>Depuis les premiers développements de la physique statistique réalisés au 19ème siècle, nombreux ont été les travaux dédiés à la relation entre les processus macroscopiques em>irréversibles</em>(tels que les phénomènes de transport) et les propriétés de la dynamique <em>réversible</em> des atomes et des molécules. Depuis deux décennies, l'<em>hypothèse du chaos microscopique</em> nous en apporte une plus grande compréhension. Dans cette thèse, nous nous intéressons plus particulièrement aux propriétés de <em>viscosité</em>. <br /><br /><p><p>Dans ce travail, nous considérons des systèmes périodiques de particules en interaction. Nous proposons une nouvelle méthode de calcul de la viscosité valable pour tous systèmes périodiques, quel que soit le potentiel d'interaction considéré. Cette méthode est basée sur la formule dérivée par Helfand exprimant la viscosité en fonction de la variance du <em>moment de Helfand</em> croissant linéairement dans le temps.<br /><br /><p><p><p>Dans les années nonante, il a été démontré qu'un système composé de seulement deux particules présente déjà de la viscosité. Les deux disques <em>durs</em> interagissent en collisions élastiques dans un domaine carré ou hexagonal avec des conditions aux bords périodiques. Nous appliquons notre méthode de calcul des propriétés de viscosité dans les deux réseaux. Nous donnons également une explication qualitative des résultats obtenus. <br /><br /><p><p>L'étude de la relation entre les propriétés de viscosité et les grandeurs du chaos microscopique représente l'une des principales tâches de cette thèse. Dans ce contexte, le <em>formalisme du taux d'échappement</em> joue un rôle majeur. Ce formalisme établit une relation directe entre cette grandeur et la viscosité. Nous étudions numériquement cette relation et la comparaison avec les résultats obtenus par notre méthode sont excellents. <br /><br /><p><p><p>D'autre part, le formalisme du taux d'échappement suppose l'existence d'un <em>répulseur fractal</em>. Après avoir mis en évidence son existence, nous appliquons le formalisme proposant une formule exprimant la viscosité en termes de l'exposant de Lyapunov du système (mesurant le caractère chaotique de la dynamique)et de la dimension fractale du répulseur. L'étude numérique de cette relation dans le modèle à deux disques durs est réalisée avec succès et sont en excellent accord avec les relations obtenus précédemment. <br /><br /><p><p>Enfin, nous nous penchons sur les systèmes composés de <em>N</em> disques durs ou sphères dures. Après une étude de l'équation d'état et des propriétés chaotiques, nous avons exploré les propriétés de viscosité dans ces systèmes. Les données numériques obtenues sont en très bon accord avec les prévisions théoriques d'Enskog. D'autre part, nous avons utilisé notre méthode de calcul de la viscosité dans des systèmes de Lennard-Jones. De plus, nous avons proposé une méthode analogue pour le calcul numérique de la <em>conduction thermique</em>. Nos résultats sont en très bon accord avec ceux obtenus par la méthode de Green-Kubo.<p></p><p><p><br /><br /><p><p><p align="justify"><p>In this thesis, we first devote a section on the history of the concept of irreversibility; of the hydrodynamics, branch of physics in which the viscosity appears; of the kinetic theory of gases establishing relationships between the microscopic dynamics and macroscopic processes like viscosity; and, finally, the interest brought in statistical mechanics of irreversible processes by the theory of chaos, more precisely, the microscopic chaos. We propose a method based on the Helfand moment in order to calculate the viscosity properties in systems of particles with periodic boundary conditions. We apply this method to the simplest system in which viscosity already exists: the two-hard-disk model. The escape-rate formalism, establishing a direct relation between chaotic quantities of the microscopic dynamics (e.g. Lyapunov exponents, fractal dimensions, etc.), is applied in this system. The results are in excellent agreement with those obtained by our Helfand-moment method. We extend the calculation of the viscosity properties to systems with more than two hard balls. Finally, we compute viscosity as well as thermal conductivity thanks to our own method also based on the Helfand moment.<p></p> / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished

Page generated in 0.1036 seconds