Spelling suggestions: "subject:"bproduct configuration"" "subject:"2product configuration""
11 |
Knowledge-based configuration : a contribution to generic modeling, evaluation and evolutionary optimization / Configuration à base de connaissances : une contribution à la modélisation générique, à l'évaluation et à l'optimisation évolutionnaireGarcés Monge, Luis 11 October 2019 (has links)
Dans un contexte de personnalisation de masse, la configuration concourante du produit et de son processus d’obtention constituent un défi industriel important : de nombreuses options ou alternatives, de nombreux liens ou contraintes et un besoin d’optimisation des choix réalisés doivent être pris en compte. Ce problème est intitulé O-CPPC (Optimization of Concurrent Product and Process Configuration). Nous considérons ce problème comme un CSP (Constraints Satisfaction Problem) et l’optimisons avec des algorithmes évolutionnaires. Un état de l’art fait apparaître : i) que la plupart des travaux de recherche sont illustrés sur des exemples spécifiques à un cas industriel ou académique et peu représentatifs de la diversité existante ; ii) un besoin d’amélioration des performances d’optimisation afin de gagner en interactivité et faire face à des problèmes de taille plus conséquente. En réponse au premier point, ces travaux de thèse proposent les briques d’un modèle générique du problème O-CPPC. Ces briques permettent d’architecturer le produit et son processus d’obtention. Ce modèle générique est utilisé pour générer un benchmark réaliste pour évaluer les algorithmes d’optimisation. Ce benchmark est ensuite utilisé pour analyser la performance de l’approche évolutionnaire CFB-EA. L’une des forces de cette approche est de proposer rapidement un front de Pareto proche de l’optimum. Pour répondre au second point, une amélioration de cette méthode est proposée puis évaluée. L’idée est, à partir d’un premier front de Pareto approximatif déterminé très rapidement, de demander à l’utilisateur de choisir une zone d’intérêt et de restreindre la recherche de solutions uniquement sur cette zone. Cette amélioration entraine des gains de temps de calcul importants. / In a context of mass customization, the concurrent configuration of the product and its production process constitute an important industrial challenge: Numerous options or alternatives, numerous links or constraints and a need to optimize the choices made. This problem is called O-CPPC (Optimization of Concurrent Product and Process Configuration). We consider this problem as a CSP (Constraints Satisfaction Problem) and optimize it with evolutionary algorithms. A state of the art shows that: i) most studies are illustrated with examples specific to an industrial or academic case and not representative of the existing diversity; ii) a need to improve optimization performance in order to gain interactivity and face larger problems. In response to the first point, this thesis proposes a generic model of the O-CPPC problem. This generic model is used to generate a realistic benchmark for evaluating optimization algorithms. This benchmark is then used to analyze the performance of the CFB-EA evolutionary approach. One of the strengths of this approach is to quickly propose a Pareto front near the optimum. To answer the second point, an improvement of this method is proposed and evaluated. The idea is, from a first approximate Pareto front, to ask the user to choose an area of interest and to restrict the search for solutions only on this area. This improvement results in significant computing time savings.
|
12 |
Development of decision support system for customer focused product configuration / Utveckling av beslutsstödsystem för kundfokuserad produktkonfigurationHannes, Fransson January 2024 (has links)
Providing products that are customized to meet a specific customer's unique needs is challenging for companies. Product configuration systems are tools that enables parts of these activities to be performed automatically. However, there is a lack of systems designed to ensure that the configured products are based on customer needs. Decision support systems based on Multi-criteria decision making methods have the potential to solve this problem. Yet, there is a lack of knowledge regarding various multi-criteria decision making methods. Moreover, there is a need to reduce the complexity of the methods by incorporating them into user-friendly software’s. This research therefore investigates how the architecture of a decision support system based on multi-criteria decision making methods could be structured to include customer needs and suggest product configurations based on them. Through a literature review various methods are analyzed. In collaboration with an aircraft towing tractor manufacturer as a representative of customizable products the architecture of the system is developed. The study shows that a system based on a combination of Analytical Hierarchy Process, Quality Function Deployment and Expert system can solve the problem. This is to the authors knowledge the first study to use this combination. It provides an approach of how to ensure that product configurations can be aligned with customer needs and that the consistency of these needs is assured.
|
Page generated in 0.1013 seconds