• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Návrh energetických systémů využívajících vodík jako palivo / Design of Energy Systems Using Hydrogen as Fuel

Slováček, Adam January 2013 (has links)
Purpose of this thesis is wisdom accumulation from current area of energetic use of hydrogen and future systems. In overview is presented possible processes where dominate steam methane reforming. In main part of thesis, steam methane reforming will be analyzed and electrolysis also. Actual results will be discussed. Next part is about energetic use of hydrogen based on thermochemical properties and safety. Used of hydrogen will be divided to areas thermal generation as burner‘s section, electric generation as fuel cell‘s section, mechanical energy as combustion engine’s section and finally chemical transportation of energy. At the end will be made a promising energy systems using hydrogen as fuel which can be applied in a large scale.
2

Large Scale Production of Hydrogen Via Steam Reforming of Waste Plastic Pyrolysis Gas

Ojoawo, Babatunde I. 03 August 2020 (has links)
No description available.
3

Produção de hidrogênio em reator anaeróbio de leito fluidizado a partir de glicerol bruto sob condições termofílicas

Ferreira, Janaína dos Santos 25 March 2014 (has links)
Made available in DSpace on 2016-06-02T19:56:56Z (GMT). No. of bitstreams: 1 6181.pdf: 2281247 bytes, checksum: ab77d4d6451a6d9054abc19310067ed2 (MD5) Previous issue date: 2014-03-25 / Financiadora de Estudos e Projetos / This study aimed to evaluate the influence of the hydraulic retention time (HRT) on hydrogen production using crude glycerol as a substrate in an anaerobic fluidized bed reactor (AFBR ) . The reactor had a volume of 1979 cm3, which was varied HDT in eight stages: Stage I, II, III, IV, V, VI , VII, VIII with HDT of 14, 12 , 10,8 , 6, 4 , 2 and 1 hour. The temperature was controlled at 55 °C, fixing the substrate concentration in the amount of 5 gL -1 . The inoculum used was granular sludge from the thermophilic anaerobic reactor and upflow sludge blanket ( UASB ) for the treatment of vinasse, located at Usina São Martinho , Pradópolis - SP . The results showed that the yield of hydrogen (HY) remained constant between the HDT of 2h to 14h (1.2 H2.mol glycerol and 1.4 mol -1) HRT of 1h and the yield was higher ( 3 moles H2 . glycerol mol -1). The volumetric H2 production was increased with decreasing HRT , with its maximum value of 1508.7 mL.h - 1.L - 1 in lower applied TDH (1h) . The biogas produced was composed of CO2 and H2. The composition varied with the decrease in HRT from 14 to 2h (Step IVII ) in the first seven stages (14 to 2 h ), reaching a mean rate between 50 and 60%. In the last phase, which HRT was 1h , the percentage of H2 biogas reached the maximum value of 70 % . The major metabolites obtained during the first seven stages of operation of the reactor were: Acetic acid (4.5 to 18%), butyric acid (4.3 to 21% ), ethanol (14 to 29%) and 1,3-propanediol (34 to 50%). As for 1h note the HDT of the presence of propionic acid (56%), acetic acid ( 11.5%) and 1,3- propanediol ( 30%). / Este estudo teve como objetivo avaliar a influência do tempo de detenção hidráulica (TDH) sobre a produção de hidrogênio, utilizando glicerol bruto como substrato em reator anaeróbio de leito fluidizado (RALF). O reator possuía um volume de 1979 cm3, no qual se variou o TDH em oitos fases: Fase I, II, III, IV, V, VI, VII, VIII com os respectivos TDH de 14, 12, 10,8, 6, 4, 2, e 1 hora. A temperatura foi controlada à 55 oC, fixando a concentração no valor de 5 g.L-1 de DQO. O inóculo utilizado foi proveniente de lodo granulado do reator termofílico anaeróbio de fluxo ascendente e manta de lodo (UASB) para o tratamento de vinhaça, localizado na Usina São Martinho, Pradópolis-SP. Os resultados mostraram que o rendimento de hidrogênio (HY) permaneceu constante entre os TDH de 14h à 2h (1,2 e 1,4 mol H2.mol glicerol-1) e no TDH de 1h o rendimento foi maior (3 mol H2.mol glicerol-1). Já a produção volumétrica de H2, sob a pressão de à 1 atm e temperatura de 55 oC, teve aumento com a diminuição do TDH, sendo seu valor máximo de 1508,7 mL.h-1.L-1 no menor TDH aplicado (1h). O biogás teve como principias compostos CO2 e H2. A composição de H2 no biogás variou com a diminuição do TDH de 14 para 2h (Fase I a VII) nas sete primeiras fases (14 a 2 h) atingindo um valor médio percentual entre 50 e 60 %. Na última fase, cujo TDH foi de 1h, o percentual de H2 biogás atingiu o valor máximo de 70%. Os principais metabólitos obtidos durante as sete primeiras fases de operação dos reatores foram: ácido acético (4,5 a 18%), ácido butírico (4,3 a 21%), etanol (14 a 29%) e 1,3-propanodiol (34 a 50%). Já para o TDH de 1h nota-se a presença de ácido propiônico (56%), ácido acético (11,5%) e 1,3-propanodiol (30%).
4

Digestão anaeróbia termofílica do melaço de cana-de-açúcar em reatores de leito fixo estruturado de duas fases e fase única para a produção de biogás / Thermophilic anaerobic digestion of sugarcane molasses in structured fixed bed reactors in two-phases and single-phase for biogas production

Cristiane Arruda de Oliveira 11 May 2018 (has links)
O Brasil é o maior produtor de cana-de-açúcar, e entre os principais subprodutos dessa indústria está o melaço de cana-de-açúcar. Esse substrato é rico em carboidratos, apresentando potencial para ser utilizado na digestão anaeróbia para geração de biogás. Neste estudo, priorizou-se a produção de biogás em condições termofílicas (55°C) com a finalidade de comparação do sistema de duas fases (reator acidogênico seguido de reator metanogênico) e sistema de fase única (acidogênico e metanogênico em uma mesma unidade), utilizando o melaço como substrato. O sistema de duas fases baseou-se na separação da acidogênese e metanogênese. O reator acidogênico (ASTBR – A) foi operado com carga orgânica volumétrica (COV) de 60,0 g L-1d-1 e tempo de detenção hidráulico (TDH) de 4 horas. O reator metanogênico, sequencial ao acidogênico (ASTBR – M II) foi operado em dez fases, com COV variando de 0,6 a 10,0 g L-1d-1 e TDH de 40 e 24 horas. O sistema de fase única foi composto por um reator metanogênico (ASTBR – M I) operado em nove fases com COV entre 2,5 e 10,0 g L-1d-1 e TDH de 28 h. Bicarbonato de sódio (NaHCO3) foi adicionado na proporção de 1,00 g NaHCO3 g-1DQO para todas as fases do ASTBR M II. Para o ASTBR – M I, variou-se a concentração de 1,00 a 0,00 g NaHCO3 g-1 DQO no reator. Para o ASTBR A a porcentagem de hidrogênio (H2) no biogás foi de 51%, a produção volumétrica de hidrogênio (PVH) de 88,0 mL H2 L-1 h-1 e o rendimento de hidrogênio (HY) de 1,18 mol H2 molcarboidratos-1. O microrganismo predominante nesse reator foi o Thermoanaerobacterium, e a principal rota a do ácido lático. O reator ASTBR – M I sofreu acidificação após a retirada completa de alcalinizante, permitindo a detecção de H2 no biogás. Porém, a retomada da adição de NaHCO3 favoreceu o crescimento das arqueias, principalmente metanogênicas hidrogenotróficas. A comparação dos reatores metanogênicos foi realizada para fases com condições semelhantes (COV de 10 g L-1d-1 e 1,00 g NaHCO3 g-1DQO) e permitiu verificar melhor desempenho na produção de CH4 do ASTBR – M II. Em relação ao MY, a eficiência do ASTBR – M II foi 44% superior ao ASTBR M – I. / Brazil is the largest producer of sugarcane and one of the main sub-products of this industry is the molasses, which is rich in carbohydrates and can be used as a substrate for biogas production in anaerobic digestion. In this study, biogas production was evaluated under thermophilic conditions (55 °C) in a two-phases system (acidogenic reactor followed by methanogenic reactor) based on phase separation and a single-phase system (acidogenic and methanogenic microorganisms in a single unit) using molasses as the substrate. The acidogenic reactor (ASTBR-A) was operated under the organic loading rate (OLR) of 60.0 g L-1d-1 and hydraulic retention time (HRT) of 4 hours. The methanogenic reactor (ASTBR M II), which was sequential to acidogenic one, was operated in ten phases with OLR ranging from 0.6 to 10.0 g L-1d-1 and HRT of 40 and 24 hours. The single-phase reactor was composed of a methanogenic reactor (ASTBR -– M I) operated in nine phases with increasing OLR from 2.5 to 10.0 g L-1d-1 and HRT of 28 hours. Sodium bicarbonate (NaHCO3) was added in the ratio of 1.00 g NaHCO3 g-1COD in all phases of ASTBR – M II. For the ASTBR – M I, the concentration varied between 1.00 to 0.00 g NaHCO3 g-1COD. In the ASTBR – A, the percentage of hydrogen (H2) in the biogas was 51%, the volumetric hydrogen production (VHP) was 88.0 mL H2 L-1 h-1 and the hydrogen yield (HY) was 1.18 mol H2 molar-1carbohydrate. The predominant microorganism in this reactor was the Thermoanaerobacterium and the main metabolite route was the lactic acid. The ASTBR – M I suffered acidification after the complete removal of the alkalinizer allowing the detection of hydrogen in the biogas. However, the use of the alkalinizer after its complete removal from the system favored the growth of Archaeas, mainly the hydrogenotrophic methanogens. The comparison of the methanogenic reactors was carried out for phases with similar conditions (OLR of 10 g L-1d-1 and 1.00 g NaHCO3 g-1COD) and allowed to verify a better performance in the methane (CH4) production in the ASTBR – M II. Regarding the methane yield (MY), the efficiency of ASTBR – M II was 44% higher than ASTBR M – I.
5

Digestão anaeróbia termofílica do melaço de cana-de-açúcar em reatores de leito fixo estruturado de duas fases e fase única para a produção de biogás / Thermophilic anaerobic digestion of sugarcane molasses in structured fixed bed reactors in two-phases and single-phase for biogas production

Oliveira, Cristiane Arruda de 11 May 2018 (has links)
O Brasil é o maior produtor de cana-de-açúcar, e entre os principais subprodutos dessa indústria está o melaço de cana-de-açúcar. Esse substrato é rico em carboidratos, apresentando potencial para ser utilizado na digestão anaeróbia para geração de biogás. Neste estudo, priorizou-se a produção de biogás em condições termofílicas (55°C) com a finalidade de comparação do sistema de duas fases (reator acidogênico seguido de reator metanogênico) e sistema de fase única (acidogênico e metanogênico em uma mesma unidade), utilizando o melaço como substrato. O sistema de duas fases baseou-se na separação da acidogênese e metanogênese. O reator acidogênico (ASTBR – A) foi operado com carga orgânica volumétrica (COV) de 60,0 g L-1d-1 e tempo de detenção hidráulico (TDH) de 4 horas. O reator metanogênico, sequencial ao acidogênico (ASTBR – M II) foi operado em dez fases, com COV variando de 0,6 a 10,0 g L-1d-1 e TDH de 40 e 24 horas. O sistema de fase única foi composto por um reator metanogênico (ASTBR – M I) operado em nove fases com COV entre 2,5 e 10,0 g L-1d-1 e TDH de 28 h. Bicarbonato de sódio (NaHCO3) foi adicionado na proporção de 1,00 g NaHCO3 g-1DQO para todas as fases do ASTBR M II. Para o ASTBR – M I, variou-se a concentração de 1,00 a 0,00 g NaHCO3 g-1 DQO no reator. Para o ASTBR A a porcentagem de hidrogênio (H2) no biogás foi de 51%, a produção volumétrica de hidrogênio (PVH) de 88,0 mL H2 L-1 h-1 e o rendimento de hidrogênio (HY) de 1,18 mol H2 molcarboidratos-1. O microrganismo predominante nesse reator foi o Thermoanaerobacterium, e a principal rota a do ácido lático. O reator ASTBR – M I sofreu acidificação após a retirada completa de alcalinizante, permitindo a detecção de H2 no biogás. Porém, a retomada da adição de NaHCO3 favoreceu o crescimento das arqueias, principalmente metanogênicas hidrogenotróficas. A comparação dos reatores metanogênicos foi realizada para fases com condições semelhantes (COV de 10 g L-1d-1 e 1,00 g NaHCO3 g-1DQO) e permitiu verificar melhor desempenho na produção de CH4 do ASTBR – M II. Em relação ao MY, a eficiência do ASTBR – M II foi 44% superior ao ASTBR M – I. / Brazil is the largest producer of sugarcane and one of the main sub-products of this industry is the molasses, which is rich in carbohydrates and can be used as a substrate for biogas production in anaerobic digestion. In this study, biogas production was evaluated under thermophilic conditions (55 °C) in a two-phases system (acidogenic reactor followed by methanogenic reactor) based on phase separation and a single-phase system (acidogenic and methanogenic microorganisms in a single unit) using molasses as the substrate. The acidogenic reactor (ASTBR-A) was operated under the organic loading rate (OLR) of 60.0 g L-1d-1 and hydraulic retention time (HRT) of 4 hours. The methanogenic reactor (ASTBR M II), which was sequential to acidogenic one, was operated in ten phases with OLR ranging from 0.6 to 10.0 g L-1d-1 and HRT of 40 and 24 hours. The single-phase reactor was composed of a methanogenic reactor (ASTBR -– M I) operated in nine phases with increasing OLR from 2.5 to 10.0 g L-1d-1 and HRT of 28 hours. Sodium bicarbonate (NaHCO3) was added in the ratio of 1.00 g NaHCO3 g-1COD in all phases of ASTBR – M II. For the ASTBR – M I, the concentration varied between 1.00 to 0.00 g NaHCO3 g-1COD. In the ASTBR – A, the percentage of hydrogen (H2) in the biogas was 51%, the volumetric hydrogen production (VHP) was 88.0 mL H2 L-1 h-1 and the hydrogen yield (HY) was 1.18 mol H2 molar-1carbohydrate. The predominant microorganism in this reactor was the Thermoanaerobacterium and the main metabolite route was the lactic acid. The ASTBR – M I suffered acidification after the complete removal of the alkalinizer allowing the detection of hydrogen in the biogas. However, the use of the alkalinizer after its complete removal from the system favored the growth of Archaeas, mainly the hydrogenotrophic methanogens. The comparison of the methanogenic reactors was carried out for phases with similar conditions (OLR of 10 g L-1d-1 and 1.00 g NaHCO3 g-1COD) and allowed to verify a better performance in the methane (CH4) production in the ASTBR – M II. Regarding the methane yield (MY), the efficiency of ASTBR – M II was 44% higher than ASTBR M – I.

Page generated in 0.1085 seconds