• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitrous oxide and methane emissions from agriculture and approaches to mitigate greenhouse gas emissions from livestock production

Webb, J. January 2017 (has links)
This thesis links papers reporting field measurements, modelling studies and reviews of greenhouse gas (GHG) emissions and their abatement from agriculture, in particular from livestock production. The aims of the work were to: quantify GHG emissions from litter-based farmyard manures; evaluate means by which GHG emissions from agricultural production may be abated; assess synergies and conflicts between the abatement of other N pollutants on emissions of nitrous oxide (N2O); analyse two records of soil temperature from 1976-2010 from Wolverhampton (UK) and Vienna (Austria). Agricultural emissions of GHGs are not readily abated by ‘end of pipe’ technologies. Large decreases in agricultural GHG emissions may require changes in the production and consumption of food that could have unwelcome impacts on both consumers and producers. However, identifying and prioritizing both modes and locations of production, together with utilizing inputs, such as N fertilizer and livestock feeds, more efficiently can reduce GHG emissions while maintaining outputs. For example, GHG emissions from livestock production may be lessened by increasing the longevity of dairy cows, thereby decreasing the proportion of unproductive replacement animals in the dairy herd. Sourcing a larger proportion of calves from the dairy herd would decrease emissions of GHGs from beef production. The distance between the region of food production to that of consumption has relatively little impact on total GHG emissions per tonne of food product. Due to greater productivity or lesser energy inputs, importing some foods produced in other parts of the world may decrease GHG emissions per tonne compared with UK production, despite the additional emissions arising from long-distance transport. Manure application techniques to abate ammonia (NH3) emissions do not axiomatically increase emissions of N2O and may decrease them. Soil temperature measurements from 1976 to 2010 were consistent with the warming trends reported over the last 40 years.
2

Digestão anaeróbia termofílica do melaço de cana-de-açúcar em reatores de leito fixo estruturado de duas fases e fase única para a produção de biogás / Thermophilic anaerobic digestion of sugarcane molasses in structured fixed bed reactors in two-phases and single-phase for biogas production

Cristiane Arruda de Oliveira 11 May 2018 (has links)
O Brasil é o maior produtor de cana-de-açúcar, e entre os principais subprodutos dessa indústria está o melaço de cana-de-açúcar. Esse substrato é rico em carboidratos, apresentando potencial para ser utilizado na digestão anaeróbia para geração de biogás. Neste estudo, priorizou-se a produção de biogás em condições termofílicas (55°C) com a finalidade de comparação do sistema de duas fases (reator acidogênico seguido de reator metanogênico) e sistema de fase única (acidogênico e metanogênico em uma mesma unidade), utilizando o melaço como substrato. O sistema de duas fases baseou-se na separação da acidogênese e metanogênese. O reator acidogênico (ASTBR – A) foi operado com carga orgânica volumétrica (COV) de 60,0 g L-1d-1 e tempo de detenção hidráulico (TDH) de 4 horas. O reator metanogênico, sequencial ao acidogênico (ASTBR – M II) foi operado em dez fases, com COV variando de 0,6 a 10,0 g L-1d-1 e TDH de 40 e 24 horas. O sistema de fase única foi composto por um reator metanogênico (ASTBR – M I) operado em nove fases com COV entre 2,5 e 10,0 g L-1d-1 e TDH de 28 h. Bicarbonato de sódio (NaHCO3) foi adicionado na proporção de 1,00 g NaHCO3 g-1DQO para todas as fases do ASTBR M II. Para o ASTBR – M I, variou-se a concentração de 1,00 a 0,00 g NaHCO3 g-1 DQO no reator. Para o ASTBR A a porcentagem de hidrogênio (H2) no biogás foi de 51%, a produção volumétrica de hidrogênio (PVH) de 88,0 mL H2 L-1 h-1 e o rendimento de hidrogênio (HY) de 1,18 mol H2 molcarboidratos-1. O microrganismo predominante nesse reator foi o Thermoanaerobacterium, e a principal rota a do ácido lático. O reator ASTBR – M I sofreu acidificação após a retirada completa de alcalinizante, permitindo a detecção de H2 no biogás. Porém, a retomada da adição de NaHCO3 favoreceu o crescimento das arqueias, principalmente metanogênicas hidrogenotróficas. A comparação dos reatores metanogênicos foi realizada para fases com condições semelhantes (COV de 10 g L-1d-1 e 1,00 g NaHCO3 g-1DQO) e permitiu verificar melhor desempenho na produção de CH4 do ASTBR – M II. Em relação ao MY, a eficiência do ASTBR – M II foi 44% superior ao ASTBR M – I. / Brazil is the largest producer of sugarcane and one of the main sub-products of this industry is the molasses, which is rich in carbohydrates and can be used as a substrate for biogas production in anaerobic digestion. In this study, biogas production was evaluated under thermophilic conditions (55 °C) in a two-phases system (acidogenic reactor followed by methanogenic reactor) based on phase separation and a single-phase system (acidogenic and methanogenic microorganisms in a single unit) using molasses as the substrate. The acidogenic reactor (ASTBR-A) was operated under the organic loading rate (OLR) of 60.0 g L-1d-1 and hydraulic retention time (HRT) of 4 hours. The methanogenic reactor (ASTBR M II), which was sequential to acidogenic one, was operated in ten phases with OLR ranging from 0.6 to 10.0 g L-1d-1 and HRT of 40 and 24 hours. The single-phase reactor was composed of a methanogenic reactor (ASTBR -– M I) operated in nine phases with increasing OLR from 2.5 to 10.0 g L-1d-1 and HRT of 28 hours. Sodium bicarbonate (NaHCO3) was added in the ratio of 1.00 g NaHCO3 g-1COD in all phases of ASTBR – M II. For the ASTBR – M I, the concentration varied between 1.00 to 0.00 g NaHCO3 g-1COD. In the ASTBR – A, the percentage of hydrogen (H2) in the biogas was 51%, the volumetric hydrogen production (VHP) was 88.0 mL H2 L-1 h-1 and the hydrogen yield (HY) was 1.18 mol H2 molar-1carbohydrate. The predominant microorganism in this reactor was the Thermoanaerobacterium and the main metabolite route was the lactic acid. The ASTBR – M I suffered acidification after the complete removal of the alkalinizer allowing the detection of hydrogen in the biogas. However, the use of the alkalinizer after its complete removal from the system favored the growth of Archaeas, mainly the hydrogenotrophic methanogens. The comparison of the methanogenic reactors was carried out for phases with similar conditions (OLR of 10 g L-1d-1 and 1.00 g NaHCO3 g-1COD) and allowed to verify a better performance in the methane (CH4) production in the ASTBR – M II. Regarding the methane yield (MY), the efficiency of ASTBR – M II was 44% higher than ASTBR M – I.
3

Digestão anaeróbia termofílica do melaço de cana-de-açúcar em reatores de leito fixo estruturado de duas fases e fase única para a produção de biogás / Thermophilic anaerobic digestion of sugarcane molasses in structured fixed bed reactors in two-phases and single-phase for biogas production

Oliveira, Cristiane Arruda de 11 May 2018 (has links)
O Brasil é o maior produtor de cana-de-açúcar, e entre os principais subprodutos dessa indústria está o melaço de cana-de-açúcar. Esse substrato é rico em carboidratos, apresentando potencial para ser utilizado na digestão anaeróbia para geração de biogás. Neste estudo, priorizou-se a produção de biogás em condições termofílicas (55°C) com a finalidade de comparação do sistema de duas fases (reator acidogênico seguido de reator metanogênico) e sistema de fase única (acidogênico e metanogênico em uma mesma unidade), utilizando o melaço como substrato. O sistema de duas fases baseou-se na separação da acidogênese e metanogênese. O reator acidogênico (ASTBR – A) foi operado com carga orgânica volumétrica (COV) de 60,0 g L-1d-1 e tempo de detenção hidráulico (TDH) de 4 horas. O reator metanogênico, sequencial ao acidogênico (ASTBR – M II) foi operado em dez fases, com COV variando de 0,6 a 10,0 g L-1d-1 e TDH de 40 e 24 horas. O sistema de fase única foi composto por um reator metanogênico (ASTBR – M I) operado em nove fases com COV entre 2,5 e 10,0 g L-1d-1 e TDH de 28 h. Bicarbonato de sódio (NaHCO3) foi adicionado na proporção de 1,00 g NaHCO3 g-1DQO para todas as fases do ASTBR M II. Para o ASTBR – M I, variou-se a concentração de 1,00 a 0,00 g NaHCO3 g-1 DQO no reator. Para o ASTBR A a porcentagem de hidrogênio (H2) no biogás foi de 51%, a produção volumétrica de hidrogênio (PVH) de 88,0 mL H2 L-1 h-1 e o rendimento de hidrogênio (HY) de 1,18 mol H2 molcarboidratos-1. O microrganismo predominante nesse reator foi o Thermoanaerobacterium, e a principal rota a do ácido lático. O reator ASTBR – M I sofreu acidificação após a retirada completa de alcalinizante, permitindo a detecção de H2 no biogás. Porém, a retomada da adição de NaHCO3 favoreceu o crescimento das arqueias, principalmente metanogênicas hidrogenotróficas. A comparação dos reatores metanogênicos foi realizada para fases com condições semelhantes (COV de 10 g L-1d-1 e 1,00 g NaHCO3 g-1DQO) e permitiu verificar melhor desempenho na produção de CH4 do ASTBR – M II. Em relação ao MY, a eficiência do ASTBR – M II foi 44% superior ao ASTBR M – I. / Brazil is the largest producer of sugarcane and one of the main sub-products of this industry is the molasses, which is rich in carbohydrates and can be used as a substrate for biogas production in anaerobic digestion. In this study, biogas production was evaluated under thermophilic conditions (55 °C) in a two-phases system (acidogenic reactor followed by methanogenic reactor) based on phase separation and a single-phase system (acidogenic and methanogenic microorganisms in a single unit) using molasses as the substrate. The acidogenic reactor (ASTBR-A) was operated under the organic loading rate (OLR) of 60.0 g L-1d-1 and hydraulic retention time (HRT) of 4 hours. The methanogenic reactor (ASTBR M II), which was sequential to acidogenic one, was operated in ten phases with OLR ranging from 0.6 to 10.0 g L-1d-1 and HRT of 40 and 24 hours. The single-phase reactor was composed of a methanogenic reactor (ASTBR -– M I) operated in nine phases with increasing OLR from 2.5 to 10.0 g L-1d-1 and HRT of 28 hours. Sodium bicarbonate (NaHCO3) was added in the ratio of 1.00 g NaHCO3 g-1COD in all phases of ASTBR – M II. For the ASTBR – M I, the concentration varied between 1.00 to 0.00 g NaHCO3 g-1COD. In the ASTBR – A, the percentage of hydrogen (H2) in the biogas was 51%, the volumetric hydrogen production (VHP) was 88.0 mL H2 L-1 h-1 and the hydrogen yield (HY) was 1.18 mol H2 molar-1carbohydrate. The predominant microorganism in this reactor was the Thermoanaerobacterium and the main metabolite route was the lactic acid. The ASTBR – M I suffered acidification after the complete removal of the alkalinizer allowing the detection of hydrogen in the biogas. However, the use of the alkalinizer after its complete removal from the system favored the growth of Archaeas, mainly the hydrogenotrophic methanogens. The comparison of the methanogenic reactors was carried out for phases with similar conditions (OLR of 10 g L-1d-1 and 1.00 g NaHCO3 g-1COD) and allowed to verify a better performance in the methane (CH4) production in the ASTBR – M II. Regarding the methane yield (MY), the efficiency of ASTBR – M II was 44% higher than ASTBR M – I.

Page generated in 0.1221 seconds