Spelling suggestions: "subject:"productivité primaire"" "subject:"productivités primaire""
21 |
Dynamique du carbone dans les mangroves de Nouvelle-Calédonie : Passé, présent, futur / Carbon dynamic in New Caledonia mangroves : Past, present, futurJacotot, Adrien 11 December 2017 (has links)
La mangrove est un écosystème complexe qui se développe sur les zones intertidales, le long des littoraux (sub)tropicaux. Dû à sa production primaire élevée, couplée à une grande capacité de séquestration du carbone organique, la mangrove a été nommée écosystème à « Carbone Bleu ». Toutefois, le changement climatique à venir, et particulièrement les augmentations en CO2 atmosphérique et en température ainsi que la hausse du niveau marin, pourraient modifier son fonctionnement. Dans de ce contexte, les objectifs étaient de (i) comprendre comment les variations eustatiques passées ont pu impacter les stocks de carbone enfouis dans les sols de mangrove, afin de mieux prévoir l’effet de la future hausse du niveau marin, (ii) caractériser les émissions de CO2 et de CH4 depuis les sols et la colonne d’eau dans la mangrove, et (iii) évaluer l’impact de la hausse des concentrations en CO2 atmosphérique et de la durée d’immersion sur la physiologie de plantules de palétuviers. L’augmentation des concentrations CO2 atmosphérique modifiera la productivité des palétuviers, notamment en stimulant leur activité photosynthétique, facilitant ainsi leurs capacités à coloniser de nouveaux espaces disponibles du fait de la hausse des océans. Cette hausse aura également un effet conséquent sur les stocks de carbone dans les sols, comme nous l’avons montré pour les variations eustatiques de l’Holocène tardif, impliquant également une migration des strates de mangrove. Finalement, les émissions de CO2 et de CH4 vers l’atmosphère sont non négligeables, tout particulièrement celles émises depuis la colonne d’eau, qui devront être pris en compte dans les futurs bilans carbone de l’écosystème. / Mangroves are complex and unique ecosystems that develop on intertidal areas along (sub)tropical coastlines. Due to their position, they are considered as major ecosystems in the coastal carbon cycle. Thanks to their high primary productivity, coupled with a high carbon sequestrating capacity in both biomass and soils, mangroves have been called “Blue Carbon” ecosystems. However, future climate change, and particularly increases in atmospheric CO2 concentrations, temperatures and sea-level rise, may alter its functioning. Within this context, the objectives were to (i) understand how eustatic variations may have impacted soil carbon stocks by the past, in order to better predict the effects of future sea-level rise, (ii) characterize CO2 and CH4 emissions from the soil and also from the water column within the mangrove forest, and (iii) evaluate the impact of future increase in atmospheric CO2 concentrations and in sea-level may affect the physiology of young mangrove seedlings. Increases in atmospheric CO2 concentrations will modify either the seedlings productivity and photosynthetic activity, therefore facilitating their ability to colonize new accommodation spaces due to the rising sea-level. This increase in sea-level will also have a consequent impact on soil carbon stocks, as we showed for the past eustatic variations of the late Holocene, also implying a migration of mangroves stands. Eventually, CO2 and CH4 emissions to the atmosphere were non-neglectable, particularly the one emitted from the water column.
|
22 |
Compréhension du climat de l’Ordovicien à l’aide de la modélisation numérique / Numerical modeling for increased understanding of Ordovician climatePohl, Alexandre 16 November 2016 (has links)
L’Ordovicien (485–444 Ma) est une période géologique caractérisée par laconcomitance d’une glaciation majeure et de l’une des 5 plus grandes extinctions de masse del’histoire de la Terre. Cette thèse avait pour objectif d’améliorer la compréhension de l’évolutiondu climat à cette époque à l’aide de la modélisation numérique, ain de fournir une imagecohérente de la glaciation. Nous avons d’abord démontré que la coniguration continentaleordovicienne induit une dynamique océanique particulière, à l’origine d’une instabilité climatiquepermettant un refroidissement brutal du climat global sans variation importante de laconcentration atmosphérique en CO2 (pCO2). Dans un deuxième temps, un modèle innovantcouplé climat-calotte a permis de produire la première simulation de la mise en place de la glaciationsupportée par les données géologiques, sous un scénario cohérent de baisse de la pCO2.Les résultats indiquent que les premières glaces continentales se seraient mises en place dèsl’Ordovicien Moyen (465 Ma), quelque 20 millions d’années plus tôt qu’initialement envisagé.Dans ce scénario, le franchissement de l’instabilité climatique ordovicienne marque la miseen place du maximum glaciaire au cours de l’Ordovicien terminal Hirnantien (445–444 Ma).Des expériences réalisées avec un modèle de végétation primitive montrent que le développementdes plantes non-vasculaires a pu constituer le mécanisme à l’origine de la chute de lapCO2, via une intensiication de l’altération des surfaces continentales. Enin, les interactionsentre climat et biosphère marine ont été envisagées selon 2 axes complémentaires. (i) De nouvellescontraintes ont été fournies pour comprendre la paléobiogéographie des communautésmarines, par la publication de cartes de la circulation océanique de surface modélisée sousdiférentes pCO2 au cours de l’Ordovicien Inférieur, Moyen et Supérieur. (ii) Les relationsentre variations climatiques et état redox de l’océan ont été étudiées avec un modèle d’océanrécent bénéiciant d’un module de biogéochimie marine (MITgcm). Les simulations suggèrentdes anoxies partielles (durant le Katien) ou globales (durant le Silurien inférieur) au cours dela transition Ordovicien–Silurien. Elles démontrent également que l’extinction de l’Ordovicienterminal ne serait pas liée à un évènement d’anoxie. / The Ordovician (485–444 Ma) is a geological period characterized by theconcomitance of a major glaciation and one of the “Big Five” mass extinction events thatpunctuated the Earth’s history. This dissertation aimed at developing a better understandingof the climatic evolution at that time through numerical modeling, in order to providea consistent picture of the glaciation. First, it was shown that the Ordovician continentalconiguration leads to a particular ocean dynamics, which induces in turn the development ofa climatic instability that allows global climate to cool suddenly in response to subtle changesin the atmospheric partial pressure of CO2 (pCO2). Secondly, an innovative climate-ice sheetcoupled model produced the irst simulation of the glaciation that is supported by geologicaldata, in the context of a decrease in pCO2. Results show that glacial onset may have occurredas early as the Mid Ordovician (465 Ma), i.e., some 20 million years earlier than thoughtinitially. In this scenario, the climatic instability is reached during the latest Ordovician andaccounts for the onset of the Hirnantian glacial maximum (445–444 Ma). Experiments conductedwith a non-vascular vegetation model reveal that the origination and expansion of theirst land plants signiicantly intensiied continental weathering during the Ordovician andpotentially drove the drop in atmospheric CO2. Finally, the interactions between climate andthe marine biosphere were investigated based on 2 complementary axes. (i) News constraintson the paleobiogeography of marine living communities were brought through the publicationof maps showing the ocean surface circulation modeled at various pCO2 levels during theEarly, Middle and Late Ordovician. (ii) The relationships between climatic variations andthe redox state of the ocean were studied using a recent ocean model with biogeochemical capabilities(MITgcm). The simulations suggest partial and global oceanic anoxic events duringthe Katian and the early Silurian respectively. They also show that anoxia is probably notresponsible for the latest Ordovician mass extinction event.
|
23 |
Past, present, and future boreal forest productivity across North America : from eddy covariance observations to long-term model simulations over 1901–2100Qu, Bo 08 1900 (has links)
Le changement climatique modifie rapidement la composition, la structure et le fonctionnement de la forêt boréale. Des simulations robustes de la productivité primaire brute (PPB) de la forêt boréale avec des modèles de biosphère terrestre (MBT) sont essentielles pour prédire la force des sources de puits de carbone dans les régions arctiques-boréales. Les mesures de covariance des turbulences fournissent des données précieuses pour l’analyse et l'affinement des MBT. Dans cette thèse, j'ai organisé un ensemble de données d'analyse de modèles pour les forêts boréales d'Amérique du Nord en compilant et harmonisant les données de flux de covariance des turbulences (les flux de dioxyde de carbone, d'eau et d'énergie) et les mesures environnementales (données météorologiques) sur huit peuplements forestiers matures (> 70 ans) représentatifs des différentes caractéristiques de peuplements, de climat et de conditions de pergélisol du biome boréal. L’ensemble de données a été utilisée dans une étude de cas pour paramétrer, forcer et évaluer le schéma canadien de surface terrestre incluant les cycles biogéochimiques (CLASSIC, version 1.3), le MBT de la suite canadienne de modèles du climat et de système terrestre. L'étude de cas a démontré l'utilité de l'ensemble de données et a fourni des lignes directrices pour l’amélioration du modèle CLASSIC. Ensuite, j'ai affiné le taux de carboxylation maximal (Vcmax), l'un des paramètres les plus importants du modèle de photosynthèse, pour les principaux types fonctionnels des plantes boréales (TFP) en utilisant une approche d'optimisation bayésienne. L'optimisation a amélioré les performances de la modélisation du PPB et de l'évapotranspiration. Enfin, avec la nouvelle paramétrisation de CLASSIC, j'ai simulé la PBB de la forêt boréale dans des peuplements forestiers de 1901 à 2100 à partir de données de forçage météorologique soigneusement ajustées en fonction des biais. Les changements dans la PBB annuelle simulée ont été quantifiés et étudiés en lien avec plusieurs contrôles environnementaux biotiques et abiotiques importants. Les simulations long terme ont révélé une augmentation du PBB annuel simulé dans tous les peuplements forestiers au cours des 200 ans. La PPB annuelle simulée dans les peuplements forestiers démontre une variation temporelle considérable des taux de changement du passé, au présent, jusqu'au futur. Les changements du début de la saison de croissance constituaient un contrôle environnemental central de la PPB annuelle simulée dans tous les peuplements forestiers du passé au présent. Il a été identifié que la température de l’air devenait plus importante pour la simulation des PBB annuelles que la durée de la saison de croissance dans le futur. Au cours du 21e siècle, l’augmentation du réchauffement, le dégel du pergélisol associé et les changements dans l’humidité du sol et la dynamique thermique étaient des mécanismes sous-jacents importants pour expliquer ces changements. Ma thèse de doctorat a permis d’identifier les opportunités d’analyses et d’affinement des modèles de biosphère terrestre en lien avec une base de données unique construite dans le cadre de cette thèse. Cette base de données a permis de fournir une nouvelle paramétrisation Vcmax au niveau de différentes TFP dans les modèles et fournir un aperçu de la productivité à long terme de la forêt boréale dans le biome boréal d’Amérique du Nord. / Climate change is rapidly altering boreal forest composition, structure, and functioning. Robust simulations of boreal forest gross primary productivity (GPP) with terrestrial biosphere models (TBMs) are critical for predicting carbon sink-source strength in Arctic-boreal regions. Eddy covariance measurements provide valuable data for benchmarking and refining TBMs. In this thesis, I curated a model benchmarking dataset for North America’s boreal forests by compiling and harmonizing eddy covariance flux (i.e., carbon dioxide, water, and energy fluxes) and supporting environmental measurements (i.e., meteorology) over eight mature forest stands (>70 years old) representative of different stand characteristics, climate, and permafrost conditions in the boreal biome. The dataset was used in a case study to parameterize, force, and evaluate the Canadian Land Surface Scheme Including biogeochemical Cycles (CLASSIC, version 1.3), the TBM of the Canadian suite of climate and Earth system models. The case study demonstrated the utility of the dataset and provided guidelines for further model refinement in CLASSIC. Next, I refined the maximum carboxylation rate at 25 °C (Vcmax25), one of the most important parameters in the photosynthesis model in CLASSIC, for representative boreal plant functional types (PFTs) using a Bayesian optimization approach. The refined PFT-level Vcmax25 yielded improved model performance for GPP and evapotranspiration. Last, I simulated boreal forest GPP in forest stands from 1901 to 2100 with CLASSIC, parameterized using the refined PFT-level Vcmax25. To reduce the uncertainty, daily meteorological forcing data from global historical reanalyses and regional climate projections were downscaled and bias-adjusted for forest stands using a multivariate bias correction algorithm. Changes in simulated annual GPP were quantified in trends and investigated with respect to several important biotic and abiotic environmental controls using a random forest approach. Long-term simulations revealed an increase in simulated annual GPP in all forest stands over the 200 years. However, simulated annual GPP in forest stands was characterized by considerable temporal variation in rates of changes from the past, over the present, to the future. Significant reductions in annual GPP were simulated in forest stands below the southern limit of permafrost during the mid-20th century. During the 21st century, all forest stands were simulated with significant increases in annual GPP. Further analyses show that the start of the growing season was a critical environmental control of simulated annual GPP in all forest stands from the past to the present. However, air temperature would become an important environmental control of simulated annual GPP in the future, showing an importance comparable to or even greater than that of the start of the growing season by the end of the 21st century. Enhanced warming, permafrost thaw, and changes in soil moisture and temperature were important for explaining the changes in simulated annual GPP over the 200 years. My PhD study provides a model benchmarking dataset for benchmarking and refining TBMs, and provides important suggestions for PFT-level Vcmax parameterizations in boreal forests. My long-term simulations reveal that boreal forest GPP in response to climate change had differential changes in different climate and permafrost zones during the 20th and 21st centuries, closely associated with differential changes in soil environment (e.g., soil thermal dynamics).
|
24 |
Reconstructions de changements environnementaux dans les archives lacustres par imagerie hyperspectrale / Reconstitutions of environmental changes in lacustrine archives by hyperspectral imagingVan Exem, Antonin 11 July 2018 (has links)
Les lacs piègent des particules sédimentaires au fil du temps de manière à former des archives sédimentaires. Tracer l’origine des particules archivées avec une résolution stratigraphique particulièrement détaillée conduit à reconstituer une ou des informations paléoenvironnementales permettant d’identifier les changements environnementaux passés. Afin de décrypter ces informations, les techniques d’analyse des carottes sédimentaires nécessitent d’identifier des marqueurs de leur composition à haute résolution. L’imagerie l’hyperspectrale demeure une des rares techniques capables de représenter ces marqueurs en deux dimensions pour caractériser les variations de la composition du sédiment et les structures stratigraphiques les plus fines. Dans ce mémoire, le potentiel de l’imagerie est mis en valeur à travers l’étude de plusieurs cas. L’objectif est de reconstituer des changements environnementaux à partir de l’origine des matières organiques (MO) sédimentaires à hauterésolution rapidement et sans destruction des archives. Plusieurs marqueurs hyperspectraux permettant de comprendre l’origine des MO sont développés sur deux sites d’étude choisis pour leur potentielle signature organique sédimentaire. Dans un environnement méditerranéen, les apports en MO détritique dans les sédiments du lac Bresson tracent les épisodes d'incendie du couvert forestier alors que les variations de carbone organique total (COT) dans une série d’archives sédimentaires reconstruisent les fluctuations de l’érosion glaciaire dans un lac arctique. Dans ces deux cas, la MO d’origine détritique est tracée pour la première fois par une méthode non-destructive et le traçage de la MO issue de la productivitéprimaire aquatique (plus classique) est amélioré par un nouvel indice spectroscopique. Ces marqueurs sont validés par des méthodes utilisées en routine (HPLC, comptage des particules de charbon, pyrolyse Rock-Eval 6) puis calibrés par ces techniques pour reconstruire des concentrations en COT à haute résolution. L’imagerie hyperspectrale permet donc de tracer lacomposition sédimentaire, voire des variations géochimiques, pour quantifier l'origine des apports organiques. Ces résultats apparaissent comme prometteurs et fournissent les bases essentielles pour développer l'utilisation en routine de cette nouvelle technique afin de reconstituer finement les changements environnementaux passés. / Over time, lakes trap sedimentary particles that form sedimentary reserves. Tracing the origin of those particles with a precise stratigraphic resolution, involves reconstituting one or more paleo environmental information thus allowing the identification of past environmental changes. Decrypting that information requires a sedimentary carrot analysis technic to identify their high resolution composition indicators. Hyperspectral imagery remains one of the rare technics capable of showing those indicators in a two dimensional form so as to characterize the variations in the composition of the sediment as well as the finer stratigraphic structures. In comparison to the methods used routinely, hyperspectral imagery is a highresolution (nanometers resolution) technic that does not destroy the core of the sediment and is time efficient (1 hour per meter of sediment). In this thesis, the potential of the high resolution imagery is highlighted through the study of several case studies. The aim is to reconstitute environmental changes based on the origin of high resolution sedimentary organic matter (OM) quickly whilst preserving their history. Several hyperspectral indicators have been developed on two carefully chosen study sites to understand the origins of those OM. Those sites were chosen based on their potential sedimentary organic signature. In a Mediterranean environment, detrital OM inputs in the Bresson lake give a history of the various forest fires whereas the organic carbon variations in a series of reserve sediments, reconstruct the fluctuations of glacier erosion in an artic lake. In both cases, the OM of detrital origin is traced for the first time through a non-destructive method. Tracing OM issued from Primary aquatic production is improved with a new spectroscopic index. These indicators are validated by the methods routinely used (HPLC and RE6) then are calibrated by these technics in order to rebuilt high resolution COT concentrations. Hyperspectral imagery allows to trace the sedimentary composition and to see geo chemical variations in order to quantify the origin of organic inputs. Those results seem promising and bring essential foundations to develop the routine use of this new technic in order to reconstitute accurately past environmental changes.
|
Page generated in 0.0586 seconds