• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre os grupos de Gottlieb / On Gottlieb groups

Pinto, Guilherme Vituri Fernandes [UNESP] 18 March 2016 (has links)
Submitted by Guilherme Vituri Fernandes Pinto null (214001018@rc.unesp.br) on 2016-04-11T07:27:24Z No. of bitstreams: 1 Dissertação Guilherme Vituri.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-04-13T14:34:46Z (GMT) No. of bitstreams: 1 pinto_gvf_me_sjrp.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5) / Made available in DSpace on 2016-04-13T14:34:46Z (GMT). No. of bitstreams: 1 pinto_gvf_me_sjrp.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5) Previous issue date: 2016-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho é estudar grande parte do artigo [6], no qual Gottlieb define o subgrupo G(X, x_0) de pi_1(X, x_0) (em que X é um CW-complexo conexo por caminhos), posteriormente chamado de grupo de Gottlieb; o calculamos para diversos espaços, como as esferas, o toro, os espaços projetivos, a garrafa de Klein, etc.; posteriormente, estudamos o artigo [22] de Varadarajan, que generalizou o grupo de Gottlieb para um subconjunto G(A, X) de [A, X]_∗ . Por fim, calculamos G(S^n, S^n). / The goal of this work is to study partially the article [6], in which Gottlieb has defined a subgroup G(X, x_0) of pi_1(X, x_0) (where X is a path-connected CW-complex based at x_0), called "Gottlieb group" in the literature. This group is computed in this work for some spaces, namely the spheres, the torus, the projective spaces, and the Klein bottle. Further, a paper by Varadarajan [22] who has generalized Gottlieb group to a subset G(A, X) of [A, X]_* is studied. Finally, the groups G(S^n, S^n) is computed.

Page generated in 0.052 seconds