Spelling suggestions: "subject:"5project gradient"" "subject:"3kproject gradient""
1 |
Contribution à l'optimisation globale : approche déterministe et stochastique et application / Contribution to global optimization : deterministic, stochastic approachs and applicationEs-Sadek, Mohamed Zeriab 21 November 2009 (has links)
Dans les situations convexes, le problème d'optimisation globale peut être abordé par un ensemble de méthodes classiques, telles, par exemple, celles basées sur le gradient, qui ont montré leur efficacité en ce domaine. Lorsque la situation n'est pas convexe, ces méthodes peuvent être mises en défaut et ne pas trouver un optimum global. La contribution de cette thèse est une méthodologie pour la détermination de l'optimum global d'une fonction non convexe, en utilisant des algorithmes hybrides basés sur un couplage entre des algorithmes stochastiques issus de familles connues, telles, par exemple, celle des algorithmes génétiques ou celle du recuit simulé et des algorithmes déterministes perturbés aléatoirement de façon convenable. D'une part, les familles d'algorithmes stochastiques considérées ont fait preuve d'efficacité pour certaines classes de problèmes et, d'autre part, l'adjonction de perturbations aléatoires permet de construire des méthodes qui sont en théorie convergents vers un optimum global. En pratique, chacune de ces approches a ses limitations et insuffisantes, de manière que le couplage envisagé dans cette thèse est une alternative susceptible d'augmenter l'efficacité numérique. Nous examinons dans cette thèse quelques unes de ces possibilités de couplage. Pour établir leur efficacité, nous les appliquons à des situations test classiques et à un problème de nature stochastique du domaine des transports. / This thesis concerns the global optimization of a non convex function under non linear restrictions, this problem cannot be solved using the classic deterministic methods like the projected gradient algorithm and the sqp method because they can solve only the convex problems. The stochastic algorithms like the genetic algorithm and the simulated annealing algorithm are also inefficients for solving this type of problems. For solving this kind of problems, we try to perturb stocasicly the deterministic classic method and to combine this perturbation with genetic algorithm and the simulated annealing. So we do the combination between the perturbed projected gradient and the genetic algorithm, the perturbed sqp method and the genetic algorithm, the perturbed projected gradient and the simulated annealing, the Piyavskii algorithm and the genetic algorithm. We applicate the coupled algorithms to different classic examples for concretited the thesis. For illustration in the real life, we applicate the coupled perturbed projected gradient end the genetic algorithm to logistic problem eventuelly transport. In this view, we sold the efficient practices.
|
2 |
Acelerando o metodo de Levenberg-Marquardt para a minimização da soma de quadrados de funções com restrições de caixa / Accelerating the Levenberg-Marquardt method for the minimization of the square of functions with box constraintsMedeiros, Luiz Antonio da Silva 10 August 2008 (has links)
Orientadores: Francisco de Assis Magalhães Gomes Neto, Jose Mario Martinez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T08:17:16Z (GMT). No. of bitstreams: 1
Medeiros_LuizAntoniodaSilva_D.pdf: 2528214 bytes, checksum: 42e1946a32b63c9fc5cd56b10d24d5cb (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho, apresentamos um algoritmo iterativo para a minimização de somas de quadrados de funções suaves, com restrições de caixa. O algoritmo é fortemente inspirado no trabalho de Birgin e Martínez [4]. A diferença principal está na escolha da direção de busca e na introdução de uma nova técnica de aceleração, usada para atualizar o passo. A cada iteração, definimos uma face ativa e resolvemos, nessa face, um subproblema quadrático irrestrito através do método evenberg-Marquardt (ver [26], [28] e [33]), obtendo uma direção de descida e uma aproximação x+ para a solução do problema. Ainda usando apenas as variáveis livres, tentamos acelerar o método definindo uma nova aproximaçaoo xa como combinação linear das últimas p - 1 aproximações da solução e do vetor x+. Os coeficientes desta combinação linear são calculados convenientemente através da resolução de um problema de Quadrados Mínimos com uma restrição de igualdade. O subproblema que determina o passo acelerado leva em conta as informações sobre a função objetivo nessas p soluções aproximadas. Como em [4], executamos uma busca linear ao longo da direção e usamos técnicas de projeção para adicionar novas restrições. Para deixar a face ativa, usamos a direção do gradiente espectral projetado [5]. Experimentos númericos são apresentados para confirmar a eficiência e robustez do novo algoritmo. / Abstract: In this work, we present an active set algorithm for minimizing the sum of squares of smooth functions, with box constraints. The algorithm is highly inspired in the work of Birgin and Mart'inez [4]. The differences are concentrated on the chosen search direction and on the use of an acceleration technique to update the step. At each iteration, we define an active face and solve an unconstrained quadratic subproblem using the Levenberg-Marquardt method (see [26], [28] and [33]), obtaining a descent direction and an approximate solution x+. Using only the free variables, we try to accelerate the method defining a new solution xa as a linear combination of the last p-1 approximate solutions together with x+. The coefficients of this linear combination are conveniently computed solving a constrained least squares problem that takes into account the objective function values of these p approximate solutions. Like in [4], we compute a line search and use projection techniques to add new constraints to the active set. The spectral projected gradient [5] is used to leave the current active face. Numerical experiments confirm that the algorithm is both efficient and robust. / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
Page generated in 0.085 seconds