• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The degree of project manager's project system compliance and project performance in Eskom distribution asset creation project execution department in the Limpopo Operating Unit

Baloyi, Maggy Tlakale January 2016 (has links)
Thesis (MBA.) -- University of Limpopo, 2016 / Project systems allow project managers to carry out work in a professional and well organised manner. These systems are created and maintained to advance project performance. Eskom spends a lot of resources on the creation and maintenance of project systems. The literature on project systems shows that, in spite of advancement in project managements processes, systems and tools, project success has not significantly improved. This problem raises questions about the value and effectiveness of project systems. Therefore this paper reports about the correlation between the degree of project manager’s compliance to project systems and project performance in Eskom Distribution Limpopo Operating Unit. The study looked at the performance of 10 projects and used empirical data on designers, planners, managers and project managers working in Eskom Distribution LOU to measure the compliance level of employees to project systems when carrying out the 10 chosen projects or any other projects not listed. A total of 45 completed questionnaires were analysed. Correlation analysis tests found a negative correlation between project manager’s project systems compliance level and project performance in terms of schedule and cost. The conclusion found was that as the compliance level on project systems increases, project performance decreases. Meaning there is an inversely proportional relationship between project system compliance level and project performance. Additionally, a lower level of knowledge than expected on the project managers, designers, and planners was found. Keywords: Project performance, Project systems, Correlation, Adherence,
2

Integrality Gaps for Strong Linear Programming and Semidefinite Programming Relaxations

Georgiou, Konstantinos 17 February 2011 (has links)
The inapproximability for NP-hard combinatorial optimization problems lies in the heart of theoretical computer science. A negative result can be either conditional, where the starting point is a complexity assumption, or unconditional, where the inapproximability holds for a restricted model of computation. Algorithms based on Linear Programming (LP) and Semidefinite Programming (SDP) relaxations are among the most prominent models of computation. The related and common measure of efficiency is the integrality gap, which sets the limitations of the associated algorithmic schemes. A number of systematic procedures, known as lift-and-project systems, have been proposed to improve the integrality gap of standard relaxations. These systems build strong hierarchies of either LP relaxations, such as the Lovasz-Schrijver (LS) and the Sherali-Adams (SA) systems, or SDP relaxations, such as the Lovasz-Schrijver SDP (LS+), the Sherali-Adams SDP (SA+) and the Lasserre (La) systems. In this thesis we prove integrality gap lower bounds for the aforementioned lift-and-project systems and for a number of combinatorial optimization problems, whose inapproximability is yet unresolved. Given that lift-and-project systems produce relaxations that have given the best algorithms known for a series of combinatorial problems, the lower bounds can be read as strong evidence of the inapproximability of the corresponding optimization problems. From the results found in the thesis we highlight the following: For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) LS+ relaxation of the Vertex Cover polytope has integrality gap 2-epsilon. The integrality gap of the standard SDP for Vertex Cover remains 2-o(1) even if all hypermetric inequalities are added to the relaxation. The resulting relaxations are incomparable to the SDP relaxations derived by the LS+ system. Finally, the addition of all ell1 inequalities eliminates all solutions not in the integral hull. For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) SA relaxation of Vertex Cover has integrality gap 2-epsilon. The integrality gap remains tight even for superconstant-level SA+ relaxations. We prove a tight lower bound for the number of tightenings that the SA system needs in order to prove the Pigeonhole Principle. We also prove sublinear and linear rank bounds for the La and SA systems respectively for the Tseitin tautology. Linear levels of the SA+ system treat highly unsatisfiable instances of fixed predicate-P constraint satisfaction problems over q-ary alphabets as fully satisfiable, when the satisfying assignments of the predicates P can be equipped with a balanced and pairwise independent distribution. We study the performance of the Lasserre system on the cut polytope. When the input is the complete graph on 2d+1 vertices, we show that the integrality gap is at least 1+1/(4d(d+1)) for the level-d SDP relaxation.
3

Integrality Gaps for Strong Linear Programming and Semidefinite Programming Relaxations

Georgiou, Konstantinos 17 February 2011 (has links)
The inapproximability for NP-hard combinatorial optimization problems lies in the heart of theoretical computer science. A negative result can be either conditional, where the starting point is a complexity assumption, or unconditional, where the inapproximability holds for a restricted model of computation. Algorithms based on Linear Programming (LP) and Semidefinite Programming (SDP) relaxations are among the most prominent models of computation. The related and common measure of efficiency is the integrality gap, which sets the limitations of the associated algorithmic schemes. A number of systematic procedures, known as lift-and-project systems, have been proposed to improve the integrality gap of standard relaxations. These systems build strong hierarchies of either LP relaxations, such as the Lovasz-Schrijver (LS) and the Sherali-Adams (SA) systems, or SDP relaxations, such as the Lovasz-Schrijver SDP (LS+), the Sherali-Adams SDP (SA+) and the Lasserre (La) systems. In this thesis we prove integrality gap lower bounds for the aforementioned lift-and-project systems and for a number of combinatorial optimization problems, whose inapproximability is yet unresolved. Given that lift-and-project systems produce relaxations that have given the best algorithms known for a series of combinatorial problems, the lower bounds can be read as strong evidence of the inapproximability of the corresponding optimization problems. From the results found in the thesis we highlight the following: For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) LS+ relaxation of the Vertex Cover polytope has integrality gap 2-epsilon. The integrality gap of the standard SDP for Vertex Cover remains 2-o(1) even if all hypermetric inequalities are added to the relaxation. The resulting relaxations are incomparable to the SDP relaxations derived by the LS+ system. Finally, the addition of all ell1 inequalities eliminates all solutions not in the integral hull. For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) SA relaxation of Vertex Cover has integrality gap 2-epsilon. The integrality gap remains tight even for superconstant-level SA+ relaxations. We prove a tight lower bound for the number of tightenings that the SA system needs in order to prove the Pigeonhole Principle. We also prove sublinear and linear rank bounds for the La and SA systems respectively for the Tseitin tautology. Linear levels of the SA+ system treat highly unsatisfiable instances of fixed predicate-P constraint satisfaction problems over q-ary alphabets as fully satisfiable, when the satisfying assignments of the predicates P can be equipped with a balanced and pairwise independent distribution. We study the performance of the Lasserre system on the cut polytope. When the input is the complete graph on 2d+1 vertices, we show that the integrality gap is at least 1+1/(4d(d+1)) for the level-d SDP relaxation.

Page generated in 0.0397 seconds