• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved approximation algorithms for Min-Max Tree Cover, Bounded Tree Cover, Shallow-Light and Buy-at-Bulk k-Steiner Tree, and (k, 2)-Subgraph

Khani, Mohammad Reza Unknown Date
No description available.
2

The Approximability of Learning and Constraint Satisfaction Problems

Wu, Yi 07 October 2010 (has links)
An α-approximation algorithm is an algorithm guaranteed to output a solutionthat is within an α ratio of the optimal solution. We are interested in thefollowing question: Given an NP-hard optimization problem, what is the bestapproximation guarantee that any polynomial time algorithm could achieve? We mostly focus on studying the approximability of two classes of NP-hardproblems: Constraint Satisfaction Problems (CSPs) and Computational Learning Problems. For CSPs, we mainly study the approximability of MAX CUT, MAX 3-CSP,MAX 2-LINR, VERTEX-PRICING, as well as serval variants of the UNIQUEGAMES.• The problem of MAX CUT is to find a partition of a graph so as to maximizethe number of edges between the two partitions. Assuming theUnique Games Conjecture, we give a complete characterization of the approximationcurve of the MAX CUT problem: for every optimum value ofthe instance, we show that certain SDP algorithm with RPR2 roundingalways achieve the optimal approximation curve.• The input to a 3-CSP is a set of Boolean constraints such that each constraintcontains at most 3 Boolean variables. The goal is to find an assignmentto these variables to maximize the number of satisfied constraints.We are interested in the case when a 3-CSP is satisfiable, i.e.,there does exist an assignment that satisfies every constraint. Assumingthe d-to-1 conjecture (a variant of the Unique Games Conjecture), weprove that it is NP-hard to give a better than 5/8-approximation for theproblem. Such a result matches a SDP algorithm by Zwick which givesa 5/8-approximation problem for satisfiable 3-CSP. In addition, our resultalso conditionally resolves a fundamental open problem in PCP theory onthe optimal soundness for a 3-query nonadaptive PCP system for NP withperfect completeness.• The problem of MAX 2-LINZ involves a linear systems of integer equations;these equations are so simple such that each equation contains atmost 2 variables. The goal is to find an assignment to the variables so asto maximize the total number of satisfied equations. It is a natural generalizationof the Unique Games Conjecture which address the hardness ofthe same equation systems over finite fields. We show that assuming theUnique Games Conjecture, for a MAX 2-LINZ instance, even that thereexists a solution that satisfies 1−ε of the equations, it is NP-hard to findone that satisfies ² of the equations for any ε > 0.
3

Temporal Clustering of Finite Metric Spaces and Spectral k-Clustering

Rossi, Alfred Vincent, III 30 October 2017 (has links)
No description available.
4

Hardness results and approximation algorithms for some problems on graphs

Aazami, Ashkan January 2008 (has links)
This thesis has two parts. In the first part, we study some graph covering problems with a non-local covering rule that allows a "remote" node to be covered by repeatedly applying the covering rule. In the second part, we provide some results on the packing of Steiner trees. In the Propagation problem we are given a graph $G$ and the goal is to find a minimum-sized set of nodes $S$ that covers all of the nodes, where a node $v$ is covered if (1) $v$ is in $S$, or (2) $v$ has a neighbor $u$ such that $u$ and all of its neighbors except $v$ are covered. Rule (2) is called the propagation rule, and it is applied iteratively. Throughout, we use $n$ to denote the number of nodes in the input graph. We prove that the path-width parameter is a lower bound for the optimal value. We show that the Propagation problem is NP-hard in planar weighted graphs. We prove that it is NP-hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in weighted (general) graphs. The second problem that we study is the Power Dominating Set problem. This problem has two covering rules. The first rule is the same as the domination rule as in the Dominating Set problem, and the second rule is the same propagation rule as in the Propagation problem. We show that it is hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in general graphs. We design and analyze an approximation algorithm with a performance guarantee of $O(\sqrt{n})$ on planar graphs. We formulate a common generalization of the above two problems called the General Propagation problem. We reformulate this general problem as an orientation problem, and based on this reformulation we design a dynamic programming algorithm. The algorithm runs in linear time when the graph has tree-width $O(1)$. Motivated by applications, we introduce a restricted version of the problem that we call the $\ell$-round General Propagation problem. We give a PTAS for the $\ell$-round General Propagation problem on planar graphs, for small values of $\ell$. Our dynamic programming algorithms and the PTAS can be extended to other problems in networks with similar propagation rules. As an example we discuss the extension of our results to the Target Set Selection problem in the threshold model of the diffusion processes. In the second part of the thesis, we focus on the Steiner Tree Packing problem. In this problem, we are given a graph $G$ and a subset of terminal nodes $R\subseteq V(G)$. The goal in this problem is to find a maximum cardinality set of disjoint trees that each spans $R$, that is, each of the trees should contain all terminal nodes. In the edge-disjoint version of this problem, the trees have to be edge disjoint. In the element-disjoint version, the trees have to be node disjoint on non-terminal nodes and edge-disjoint on edges adjacent to terminals. We show that both problems are NP-hard when there are only $3$ terminals. Our main focus is on planar instances of these problems. We show that the edge-disjoint version of the problem is NP-hard even in planar graphs with $3$ terminals on the same face of the embedding. Next, we design an algorithm that achieves an approximation guarantee of $\frac{1}{2}-\frac{1}{k}$, given a planar graph that is $k$ element-connected on the terminals; in fact, given such a graph the algorithm returns $k/2-1$ element-disjoint Steiner trees. Using this algorithm we get an approximation algorithm with guarantee of (almost) $4$ for the edge-disjoint version of the problem in planar graphs. We also show that the natural LP relaxation of the edge-disjoint Steiner Tree Packing problem has an integrality ratio of $2-\epsilon$ in planar graphs.
5

Hardness results and approximation algorithms for some problems on graphs

Aazami, Ashkan January 2008 (has links)
This thesis has two parts. In the first part, we study some graph covering problems with a non-local covering rule that allows a "remote" node to be covered by repeatedly applying the covering rule. In the second part, we provide some results on the packing of Steiner trees. In the Propagation problem we are given a graph $G$ and the goal is to find a minimum-sized set of nodes $S$ that covers all of the nodes, where a node $v$ is covered if (1) $v$ is in $S$, or (2) $v$ has a neighbor $u$ such that $u$ and all of its neighbors except $v$ are covered. Rule (2) is called the propagation rule, and it is applied iteratively. Throughout, we use $n$ to denote the number of nodes in the input graph. We prove that the path-width parameter is a lower bound for the optimal value. We show that the Propagation problem is NP-hard in planar weighted graphs. We prove that it is NP-hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in weighted (general) graphs. The second problem that we study is the Power Dominating Set problem. This problem has two covering rules. The first rule is the same as the domination rule as in the Dominating Set problem, and the second rule is the same propagation rule as in the Propagation problem. We show that it is hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in general graphs. We design and analyze an approximation algorithm with a performance guarantee of $O(\sqrt{n})$ on planar graphs. We formulate a common generalization of the above two problems called the General Propagation problem. We reformulate this general problem as an orientation problem, and based on this reformulation we design a dynamic programming algorithm. The algorithm runs in linear time when the graph has tree-width $O(1)$. Motivated by applications, we introduce a restricted version of the problem that we call the $\ell$-round General Propagation problem. We give a PTAS for the $\ell$-round General Propagation problem on planar graphs, for small values of $\ell$. Our dynamic programming algorithms and the PTAS can be extended to other problems in networks with similar propagation rules. As an example we discuss the extension of our results to the Target Set Selection problem in the threshold model of the diffusion processes. In the second part of the thesis, we focus on the Steiner Tree Packing problem. In this problem, we are given a graph $G$ and a subset of terminal nodes $R\subseteq V(G)$. The goal in this problem is to find a maximum cardinality set of disjoint trees that each spans $R$, that is, each of the trees should contain all terminal nodes. In the edge-disjoint version of this problem, the trees have to be edge disjoint. In the element-disjoint version, the trees have to be node disjoint on non-terminal nodes and edge-disjoint on edges adjacent to terminals. We show that both problems are NP-hard when there are only $3$ terminals. Our main focus is on planar instances of these problems. We show that the edge-disjoint version of the problem is NP-hard even in planar graphs with $3$ terminals on the same face of the embedding. Next, we design an algorithm that achieves an approximation guarantee of $\frac{1}{2}-\frac{1}{k}$, given a planar graph that is $k$ element-connected on the terminals; in fact, given such a graph the algorithm returns $k/2-1$ element-disjoint Steiner trees. Using this algorithm we get an approximation algorithm with guarantee of (almost) $4$ for the edge-disjoint version of the problem in planar graphs. We also show that the natural LP relaxation of the edge-disjoint Steiner Tree Packing problem has an integrality ratio of $2-\epsilon$ in planar graphs.
6

Intractability Results for some Computational Problems

Ponnuswami, Ashok Kumar 08 July 2008 (has links)
In this thesis, we show results for some well-studied problems from learning theory and combinatorial optimization. Learning Parities under the Uniform Distribution: We study the learnability of parities in the agnostic learning framework of Haussler and Kearns et al. We show that under the uniform distribution, agnostically learning parities reduces to learning parities with random classification noise, commonly referred to as the noisy parity problem. Together with the parity learning algorithm of Blum et al, this gives the first nontrivial algorithm for agnostic learning of parities. We use similar techniques to reduce learning of two other fundamental concept classes under the uniform distribution to learning of noisy parities. Namely, we show that learning of DNF expressions reduces to learning noisy parities of just logarithmic number of variables and learning of k-juntas reduces to learning noisy parities of k variables. Agnostic Learning of Halfspaces: We give an essentially optimal hardness result for agnostic learning of halfspaces over rationals. We show that for any constant ε finding a halfspace that agrees with an unknown function on 1/2+ε fraction of examples is NP-hard even when there exists a halfspace that agrees with the unknown function on 1-ε fraction of examples. This significantly improves on a number of previous hardness results for this problem. We extend the result to ε = 2[superscript-Ω(sqrt{log n})] assuming NP is not contained in DTIME(2[superscript(log n)O(1)]). Majorities of Halfspaces: We show that majorities of halfspaces are hard to PAC-learn using any representation, based on the cryptographic assumption underlying the Ajtai-Dwork cryptosystem. This also implies a hardness result for learning halfspaces with a high rate of adversarial noise even if the learning algorithm can output any efficiently computable hypothesis. Max-Clique, Chromatic Number and Min-3Lin-Deletion: We prove an improved hardness of approximation result for two problems, namely, the problem of finding the size of the largest clique in a graph (also referred to as the Max-Clique problem) and the problem of finding the chromatic number of a graph. We show that for any constant γ > 0, there is no polynomial time algorithm that approximates these problems within factor n/2[superscript(log n)3/4+γ] in an n vertex graph, assuming NP is not contained in BPTIME(2[superscript(log n)O(1)]). This improves the hardness factor of n/2[superscript (log n)1-γ'] for some small (unspecified) constant γ' > 0 shown by Khot. Our main idea is to show an improved hardness result for the Min-3Lin-Deletion problem. An instance of Min-3Lin-Deletion is a system of linear equations modulo 2, where each equation is over three variables. The objective is to find the minimum number of equations that need to be deleted so that the remaining system of equations has a satisfying assignment. We show a hardness factor of 2[superscript sqrt{log n}] for this problem, improving upon the hardness factor of (log n)[superscriptβ] shown by Hastad, for some small (unspecified) constant β > 0. The hardness results for Max-Clique and chromatic number are then obtained using the reduction from Min-3Lin-Deletion as given by Khot. Monotone Multilinear Boolean Circuits for Bipartite Perfect Matching: A monotone Boolean circuit is said to be multilinear if for any AND gate in the circuit, the minimal representation of the two input functions to the gate do not have any variable in common. We show that monotone multilinear Boolean circuits for computing bipartite perfect matching require exponential size. In fact we prove a stronger result by characterizing the structure of the smallest monotone multilinear Boolean circuits for the problem.
7

Integrality Gaps for Strong Linear Programming and Semidefinite Programming Relaxations

Georgiou, Konstantinos 17 February 2011 (has links)
The inapproximability for NP-hard combinatorial optimization problems lies in the heart of theoretical computer science. A negative result can be either conditional, where the starting point is a complexity assumption, or unconditional, where the inapproximability holds for a restricted model of computation. Algorithms based on Linear Programming (LP) and Semidefinite Programming (SDP) relaxations are among the most prominent models of computation. The related and common measure of efficiency is the integrality gap, which sets the limitations of the associated algorithmic schemes. A number of systematic procedures, known as lift-and-project systems, have been proposed to improve the integrality gap of standard relaxations. These systems build strong hierarchies of either LP relaxations, such as the Lovasz-Schrijver (LS) and the Sherali-Adams (SA) systems, or SDP relaxations, such as the Lovasz-Schrijver SDP (LS+), the Sherali-Adams SDP (SA+) and the Lasserre (La) systems. In this thesis we prove integrality gap lower bounds for the aforementioned lift-and-project systems and for a number of combinatorial optimization problems, whose inapproximability is yet unresolved. Given that lift-and-project systems produce relaxations that have given the best algorithms known for a series of combinatorial problems, the lower bounds can be read as strong evidence of the inapproximability of the corresponding optimization problems. From the results found in the thesis we highlight the following: For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) LS+ relaxation of the Vertex Cover polytope has integrality gap 2-epsilon. The integrality gap of the standard SDP for Vertex Cover remains 2-o(1) even if all hypermetric inequalities are added to the relaxation. The resulting relaxations are incomparable to the SDP relaxations derived by the LS+ system. Finally, the addition of all ell1 inequalities eliminates all solutions not in the integral hull. For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) SA relaxation of Vertex Cover has integrality gap 2-epsilon. The integrality gap remains tight even for superconstant-level SA+ relaxations. We prove a tight lower bound for the number of tightenings that the SA system needs in order to prove the Pigeonhole Principle. We also prove sublinear and linear rank bounds for the La and SA systems respectively for the Tseitin tautology. Linear levels of the SA+ system treat highly unsatisfiable instances of fixed predicate-P constraint satisfaction problems over q-ary alphabets as fully satisfiable, when the satisfying assignments of the predicates P can be equipped with a balanced and pairwise independent distribution. We study the performance of the Lasserre system on the cut polytope. When the input is the complete graph on 2d+1 vertices, we show that the integrality gap is at least 1+1/(4d(d+1)) for the level-d SDP relaxation.
8

Integrality Gaps for Strong Linear Programming and Semidefinite Programming Relaxations

Georgiou, Konstantinos 17 February 2011 (has links)
The inapproximability for NP-hard combinatorial optimization problems lies in the heart of theoretical computer science. A negative result can be either conditional, where the starting point is a complexity assumption, or unconditional, where the inapproximability holds for a restricted model of computation. Algorithms based on Linear Programming (LP) and Semidefinite Programming (SDP) relaxations are among the most prominent models of computation. The related and common measure of efficiency is the integrality gap, which sets the limitations of the associated algorithmic schemes. A number of systematic procedures, known as lift-and-project systems, have been proposed to improve the integrality gap of standard relaxations. These systems build strong hierarchies of either LP relaxations, such as the Lovasz-Schrijver (LS) and the Sherali-Adams (SA) systems, or SDP relaxations, such as the Lovasz-Schrijver SDP (LS+), the Sherali-Adams SDP (SA+) and the Lasserre (La) systems. In this thesis we prove integrality gap lower bounds for the aforementioned lift-and-project systems and for a number of combinatorial optimization problems, whose inapproximability is yet unresolved. Given that lift-and-project systems produce relaxations that have given the best algorithms known for a series of combinatorial problems, the lower bounds can be read as strong evidence of the inapproximability of the corresponding optimization problems. From the results found in the thesis we highlight the following: For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) LS+ relaxation of the Vertex Cover polytope has integrality gap 2-epsilon. The integrality gap of the standard SDP for Vertex Cover remains 2-o(1) even if all hypermetric inequalities are added to the relaxation. The resulting relaxations are incomparable to the SDP relaxations derived by the LS+ system. Finally, the addition of all ell1 inequalities eliminates all solutions not in the integral hull. For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) SA relaxation of Vertex Cover has integrality gap 2-epsilon. The integrality gap remains tight even for superconstant-level SA+ relaxations. We prove a tight lower bound for the number of tightenings that the SA system needs in order to prove the Pigeonhole Principle. We also prove sublinear and linear rank bounds for the La and SA systems respectively for the Tseitin tautology. Linear levels of the SA+ system treat highly unsatisfiable instances of fixed predicate-P constraint satisfaction problems over q-ary alphabets as fully satisfiable, when the satisfying assignments of the predicates P can be equipped with a balanced and pairwise independent distribution. We study the performance of the Lasserre system on the cut polytope. When the input is the complete graph on 2d+1 vertices, we show that the integrality gap is at least 1+1/(4d(d+1)) for the level-d SDP relaxation.
9

Computational and communication complexity of geometric problems

Hajiaghaei Shanjani, Sima 26 July 2021 (has links)
In this dissertation, we investigate a number of geometric problems in different settings. We present lower bounds and approximation algorithms for geometric problems in sequential and distributed settings. For the sequential setting, we prove the first hardness of approximation results for the following problems: \begin{itemize} \item Red-Blue Geometric Set Cover is APX-hard when the objects are axis-aligned rectangles. \item Red-Blue Geometric Set Cover cannot be approximated to within $2^{\log^{1-1/{(\log\log m)^c}}m}$ in polynomial time for any constant $c < 1/2$, unless $P=NP$, when the given objects are $m$ triangles or convex objects. This shows that Red-Blue Geometric Set Cover is a harder problem than Geometric Set Cover for some class of objects. \item Boxes Class Cover is APX-hard. \end{itemize} We also define MaxRM-3SAT, a restricted version of Max3SAT, and we prove that this problem is APX-hard. This problem might be interesting in its own right.\\ In the distributed setting, we define a new model, the fixed-link model, where each processor has a position on the plane and processors can communicate to each other if and only if there is an edge between them. We motivate the model and study a number of geometric problems in this model. We prove lower bounds on the communication complexity of the problems in the fixed-link model and present approximation algorithms for them. We prove lower bounds on the number of expected bits required for any randomized algorithm in the fixed-link model with $n$ nodes to solve the following problems, when the communication is in the asynchronous KT1 model: \begin{itemize} \item $\Omega(n^2/\log n)$ expected bits of communication are required for solving Diameter, Convex Hull, or Closest Pair, even if the graph has only a linear number of edges. \item $\Omega( min\{n^2,1/\epsilon\})$ expected bits of communications are required for approximating Diameter within a $1-\epsilon$ factor of optimal, even if the graph is planar. \item $\Omega(n^2)$ bits of communications is required for approximating Closest Pair in a graph on an $[n^c] \times [n^c]$ grid, for any constant $c>1+1/(2\lg n)$, within $\frac{n^{c-1/2}}{4}-\epsilon$ factor of optimal, even if the graph is planar. \end{itemize} We also present approximation algorithms in geometric communication networks with $n$ nodes, when the communication is in the asynchronous CONGEST KT1 model: \begin{itemize} \item An $\epsilon$-kernel, and consequently $(1-\epsilon)$-\diamapprox~ and \ep -Approximate Hull with $O(\frac{n}{\sqrt{\epsilon}})$ messages plus the costs of constructing a spanning tree. \item An $\frac{n^c}{\sqrt{\frac{k}{2}}}$-Approximate Closest Pair on an $[n^c] \times [n^c]$ grid , for a constant $c>1/2$, plus the cost of computing a spanning tree, for any $k\leq {n-1}$. \end{itemize} We also define a new version of the two-party communication problem, Path Computation, where two parties communicate through a path. We prove a lower bound on the communication complexity of this problem. / Graduate
10

On the Complexity of Binary Polynomial Optimization Over Acyclic Hypergraphs

Del Pia, Alberto, Di Gregorio, Silvia 19 March 2024 (has links)
In this work, we advance the understanding of the fundamental limits of computation for binary polynomial optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. In fact, we give a strongly polynomial-time algorithm for instances whose corresponding hypergraph is β-acyclic. We note that the β-acyclicity assumption is natural in several applications including relational database schemes and the lifted multicut problem on trees. Due to the novelty of our proving technique, we obtain an algorithm which is interesting also from a practical viewpoint. This is because our algorithm is very simple to implement and the running time is a polynomial of very low degree in the number of nodes and edges of the hypergraph. Our result completely settles the computational complexity of BPO over acyclic hypergraphs, since the problem is NP-hard on α-acyclic instances.Our algorithm can also be applied to any general BPO problem that contains β-cycles. For these problems, the algorithm returns a smaller instance together with a rule to extend any optimal solution of the smaller instance to an optimal solution of the original instance.

Page generated in 0.1596 seconds