• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 11
  • 11
  • 11
  • 11
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of Circulations and Removable Pairings to TSP and 2ECSS

Fu, Yao 08 May 2014 (has links)
In this thesis we focus on two NP-hard and intensively studied problems: The travelling salesman problem (TSP), which aims to find a minimum cost tour that visits every node exactly once in a complete weighted graph, and the 2-edge-connected spanning subgraph problem (2ECSS), which aims to find a minimum size 2-edge-connected spanning subgraph in a given graph. TSP and 2ECSS have many real world applications. However, both problems are NP-hard which means it is unlikely that polynomial time algorithms exist to solve them, so methods that return close to optimal solutions are sought. In this thesis we mainly focus on k-approximation algorithms for the two problems, which efficiently return a solution within k times of the optimal solution. For a special case of TSP called graph TSP, using ideas from Momke and Svensson, we present a 25/18-approximation algorithm for a special class of graphs using circulations and T-joins, which improves the previous known best bound of 7/5 for such graphs. Moreover, if the graph does not contain special nodes, our algorithm ensures the ratio of 4/3. For 2ECSS, given any k-edge-connected graph G=(V,E), |V|=n, |E|=m, we present an approximation algorithm that gives a 2-edge-connected spanning subgraph with the number of edges at most n+(m-n)/(k-1)-(k-2)/(k-1) with a novel use of circulations, which improves both the approximation ratio and the simplicity of the proof compared to a result by Huh in 2004.
2

On Applying Methods for Graph-TSP to Metric TSP

Desjardins, Nicholas January 2016 (has links)
The Metric Travelling Salesman Problem, henceforth metric TSP, is a fundamental problem in combinatorial optimization which consists of finding a minimum cost Hamiltonian cycle (also called a TSP tour) in a weighted complete graph in which the costs are metric. Metric TSP is known to belong to a class of problems called NP-hard even in the special case of graph-TSP, where the metric costs are based on a given graph. Thus, it is highly unlikely that efficient methods exist for solving large instances of these problems exactly. In this thesis, we develop a new heuristic for metric TSP based on extending ideas successfully used by Mömke and Svensson for the special case of graph-TSP to the more general case of metric TSP. We demonstrate the efficiency and usefulness of our heuristic through empirical testing. Additionally, we turn our attention to graph-TSP. For this special case of metric TSP, there has been much recent progress with regards to improvements on the cost of the solutions. We find the exact value of the ratio between the cost of the optimal TSP tour and the cost of the optimal subtour linear programming relaxation for small instances of graph-TSP, which was previously unknown. We also provide a simplified algorithm for special graph-TSP instances based on the subtour linear programming relaxation.
3

Applications of Circulations and Removable Pairings to TSP and 2ECSS

Fu, Yao January 2014 (has links)
In this thesis we focus on two NP-hard and intensively studied problems: The travelling salesman problem (TSP), which aims to find a minimum cost tour that visits every node exactly once in a complete weighted graph, and the 2-edge-connected spanning subgraph problem (2ECSS), which aims to find a minimum size 2-edge-connected spanning subgraph in a given graph. TSP and 2ECSS have many real world applications. However, both problems are NP-hard which means it is unlikely that polynomial time algorithms exist to solve them, so methods that return close to optimal solutions are sought. In this thesis we mainly focus on k-approximation algorithms for the two problems, which efficiently return a solution within k times of the optimal solution. For a special case of TSP called graph TSP, using ideas from Momke and Svensson, we present a 25/18-approximation algorithm for a special class of graphs using circulations and T-joins, which improves the previous known best bound of 7/5 for such graphs. Moreover, if the graph does not contain special nodes, our algorithm ensures the ratio of 4/3. For 2ECSS, given any k-edge-connected graph G=(V,E), |V|=n, |E|=m, we present an approximation algorithm that gives a 2-edge-connected spanning subgraph with the number of edges at most n+(m-n)/(k-1)-(k-2)/(k-1) with a novel use of circulations, which improves both the approximation ratio and the simplicity of the proof compared to a result by Huh in 2004.
4

Approximation Algorithms for Network Connectivity Problems

Cameron, Amy 18 April 2012 (has links)
In this dissertation, we examine specific network connectivity problems, and achieve improved approximation algorithm and integrality gap results for them. We introduce an important new, highly useful and applicable, network connectivity problem - the Vital Core Connectivity Problem (VCC). Despite its many practical uses, this problem has not been previously studied. We present the first constant factor approximation algorithm for VCC, and provide an upper bound on the integrality gap of its linear programming relaxation. We also introduce a new, useful, extension of the minimum spanning tree problem, called the Extended Minimum Spanning Tree Problem (EMST), that is based on a special case of VCC; and provide both a polynomial-time algorithm and a complete linear description for it. Furthermore, we show how to generalize this new problem to handle numerous disjoint vital cores, providing the first complete linear description of, and polynomial-time algorithm for, the generalized problem. We examine the Survivable Network Design Problem (SNDP) with multiple copies of edges allowed in the solution (multi-SNDP), and present a new approximation algorithm for which the approximation guarantee is better than that of the current best known for certain cases of multi-SNDP. With our method, we also obtain improved bounds on the integrality gap of the linear programming relaxation of the problem. Furthermore, we show the application of these results to variations of SNDP. We investigate cases where the optimal values of multi-SNDP and SNDP are equal; and we present an improvement on the previously best known integrality gap bound and approximation guarantee for the special case of SNDP with metric costs and low vertex connectivity requirements, as well as for the similar special case of the Vertex Connected Survivable Network Design Problem (VC-SNDP). The quality of the results that one can obtain for a given network design problem often depends on its integer linear programming formulation, and, in particular, on its linear programming relaxation. In this connection, we investigate formulations for the Steiner Tree Problem (ST). We propose two new formulations for ST, and investigate their strength in terms of their associated integrality gaps.
5

Theoretical and Experimental Studies on the Minimum Size 2-edge-connected Spanning Subgraph Problem

Sun, Yu 21 May 2013 (has links)
A graph is said to be 2-edge-connected if it remains connected after the deletion of any single edge. Given an unweighted bridgeless graph G with n vertices, the minimum size 2-edge-connected spanning subgraph problem (2EC) is that of finding a 2-edge-connected spanning subgraph of G with the minimum number of edges. This problem has important applications in the design of survivable networks. However, because the problem is NP-hard, it is unlikely that efficient methods exist for solving it. Thus efficient methods that find solutions that are provably close to optimal are sought. In this thesis, an approximation algorithm is presented for 2EC on bridgeless cubic graphs which guarantees to be within 5/4 of the optimal solution value, improving on the previous best proven approximation guarantee of 5/4+ε for this problem. We also focus on the linear programming (LP) relaxation of 2EC, which provides important lower bounds for 2EC in useful solution techniques like branch and bound. The “goodness” of this lower bound is measured by the integrality gap of the LP relaxation for 2EC, denoted by α2EC. Through a computational study, we find the exact value of α2EC for graphs with small n. Moreover, a significant improvement is found for the lower bound on the value of α2EC for bridgeless subcubic graphs, which improves the known best lower bound on α2EC from 9/8 to 8/7.
6

Approximation Algorithms for Network Connectivity Problems

Cameron, Amy 18 April 2012 (has links)
In this dissertation, we examine specific network connectivity problems, and achieve improved approximation algorithm and integrality gap results for them. We introduce an important new, highly useful and applicable, network connectivity problem - the Vital Core Connectivity Problem (VCC). Despite its many practical uses, this problem has not been previously studied. We present the first constant factor approximation algorithm for VCC, and provide an upper bound on the integrality gap of its linear programming relaxation. We also introduce a new, useful, extension of the minimum spanning tree problem, called the Extended Minimum Spanning Tree Problem (EMST), that is based on a special case of VCC; and provide both a polynomial-time algorithm and a complete linear description for it. Furthermore, we show how to generalize this new problem to handle numerous disjoint vital cores, providing the first complete linear description of, and polynomial-time algorithm for, the generalized problem. We examine the Survivable Network Design Problem (SNDP) with multiple copies of edges allowed in the solution (multi-SNDP), and present a new approximation algorithm for which the approximation guarantee is better than that of the current best known for certain cases of multi-SNDP. With our method, we also obtain improved bounds on the integrality gap of the linear programming relaxation of the problem. Furthermore, we show the application of these results to variations of SNDP. We investigate cases where the optimal values of multi-SNDP and SNDP are equal; and we present an improvement on the previously best known integrality gap bound and approximation guarantee for the special case of SNDP with metric costs and low vertex connectivity requirements, as well as for the similar special case of the Vertex Connected Survivable Network Design Problem (VC-SNDP). The quality of the results that one can obtain for a given network design problem often depends on its integer linear programming formulation, and, in particular, on its linear programming relaxation. In this connection, we investigate formulations for the Steiner Tree Problem (ST). We propose two new formulations for ST, and investigate their strength in terms of their associated integrality gaps.
7

Approximation Algorithms for Network Connectivity Problems

Cameron, Amy January 2012 (has links)
In this dissertation, we examine specific network connectivity problems, and achieve improved approximation algorithm and integrality gap results for them. We introduce an important new, highly useful and applicable, network connectivity problem - the Vital Core Connectivity Problem (VCC). Despite its many practical uses, this problem has not been previously studied. We present the first constant factor approximation algorithm for VCC, and provide an upper bound on the integrality gap of its linear programming relaxation. We also introduce a new, useful, extension of the minimum spanning tree problem, called the Extended Minimum Spanning Tree Problem (EMST), that is based on a special case of VCC; and provide both a polynomial-time algorithm and a complete linear description for it. Furthermore, we show how to generalize this new problem to handle numerous disjoint vital cores, providing the first complete linear description of, and polynomial-time algorithm for, the generalized problem. We examine the Survivable Network Design Problem (SNDP) with multiple copies of edges allowed in the solution (multi-SNDP), and present a new approximation algorithm for which the approximation guarantee is better than that of the current best known for certain cases of multi-SNDP. With our method, we also obtain improved bounds on the integrality gap of the linear programming relaxation of the problem. Furthermore, we show the application of these results to variations of SNDP. We investigate cases where the optimal values of multi-SNDP and SNDP are equal; and we present an improvement on the previously best known integrality gap bound and approximation guarantee for the special case of SNDP with metric costs and low vertex connectivity requirements, as well as for the similar special case of the Vertex Connected Survivable Network Design Problem (VC-SNDP). The quality of the results that one can obtain for a given network design problem often depends on its integer linear programming formulation, and, in particular, on its linear programming relaxation. In this connection, we investigate formulations for the Steiner Tree Problem (ST). We propose two new formulations for ST, and investigate their strength in terms of their associated integrality gaps.
8

Theoretical and Experimental Studies on the Minimum Size 2-edge-connected Spanning Subgraph Problem

Sun, Yu January 2013 (has links)
A graph is said to be 2-edge-connected if it remains connected after the deletion of any single edge. Given an unweighted bridgeless graph G with n vertices, the minimum size 2-edge-connected spanning subgraph problem (2EC) is that of finding a 2-edge-connected spanning subgraph of G with the minimum number of edges. This problem has important applications in the design of survivable networks. However, because the problem is NP-hard, it is unlikely that efficient methods exist for solving it. Thus efficient methods that find solutions that are provably close to optimal are sought. In this thesis, an approximation algorithm is presented for 2EC on bridgeless cubic graphs which guarantees to be within 5/4 of the optimal solution value, improving on the previous best proven approximation guarantee of 5/4+ε for this problem. We also focus on the linear programming (LP) relaxation of 2EC, which provides important lower bounds for 2EC in useful solution techniques like branch and bound. The “goodness” of this lower bound is measured by the integrality gap of the LP relaxation for 2EC, denoted by α2EC. Through a computational study, we find the exact value of α2EC for graphs with small n. Moreover, a significant improvement is found for the lower bound on the value of α2EC for bridgeless subcubic graphs, which improves the known best lower bound on α2EC from 9/8 to 8/7.
9

Towards New Bounds for the 2-Edge Connected Spanning Subgraph Problem

Legault, Philippe January 2017 (has links)
Given a complete graph K_n = (V,E) with non-negative edge costs c ∈ R^E, the problem multi-2EC_cost is that of finding a 2-edge connected spanning multi-subgraph of K_n with minimum cost. It is believed that there are no efficient ways to solve the problem exactly, as it is NP-hard. Methods such as approximation algorithms, which rely on lower bounds like the linear programming relaxation multi-2EC^LP of multi-2EC , thus become vital cost cost to obtain solutions guaranteed to be close to the optimal in a fast manner. In this thesis, we focus on the integrality gap αmulti-2EC of multi-2EC^LP , which is a measure of the quality of multi-2EC^LP as a lower bound. Although we currently only know cost that 6/5 ≤ αmulti-2EC_cost ≤ 3 , the integrality gap for multi-2EC_cost has been conjectured to be 6/5. We explore the idea of using the structure of solutions for αmulti-2EC_cost and the concept of convex combination to obtain improved bounds for αmulti-2EC_cost. We focus our efforts on a family J of half-integer solutions that appear to give the largest integrality gap for multi-2EC_cost. We successfully show that the conjecture αmulti-2EC_cost = 6/5 is true for any cost functions optimized by some x∗ ∈ J. We also study the related problem 2EC_size, which consists of finding the minimum size 2-edge connected spanning subgraph of a 2-edge connected graph. The problem is NP-hard even at its simplest, when restricted to cubic 3-edge connected graphs. We study that case in the hope of finding a more general method, and we show that every 3-edge connected cubic graph G = (V ′, E′), with n = |V ′| allows a 2EC_size solution for G of size at most 7n/6 This improves upon Boyd, Iwata and Takazawa’s guarantee of 6n/5 and extend Takazawa’s 7n/6 guarantee for bipartite cubic 3-edge connected graphs to all cubic 3-edge connected graphs.
10

Integrality Gaps for Strong Linear Programming and Semidefinite Programming Relaxations

Georgiou, Konstantinos 17 February 2011 (has links)
The inapproximability for NP-hard combinatorial optimization problems lies in the heart of theoretical computer science. A negative result can be either conditional, where the starting point is a complexity assumption, or unconditional, where the inapproximability holds for a restricted model of computation. Algorithms based on Linear Programming (LP) and Semidefinite Programming (SDP) relaxations are among the most prominent models of computation. The related and common measure of efficiency is the integrality gap, which sets the limitations of the associated algorithmic schemes. A number of systematic procedures, known as lift-and-project systems, have been proposed to improve the integrality gap of standard relaxations. These systems build strong hierarchies of either LP relaxations, such as the Lovasz-Schrijver (LS) and the Sherali-Adams (SA) systems, or SDP relaxations, such as the Lovasz-Schrijver SDP (LS+), the Sherali-Adams SDP (SA+) and the Lasserre (La) systems. In this thesis we prove integrality gap lower bounds for the aforementioned lift-and-project systems and for a number of combinatorial optimization problems, whose inapproximability is yet unresolved. Given that lift-and-project systems produce relaxations that have given the best algorithms known for a series of combinatorial problems, the lower bounds can be read as strong evidence of the inapproximability of the corresponding optimization problems. From the results found in the thesis we highlight the following: For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) LS+ relaxation of the Vertex Cover polytope has integrality gap 2-epsilon. The integrality gap of the standard SDP for Vertex Cover remains 2-o(1) even if all hypermetric inequalities are added to the relaxation. The resulting relaxations are incomparable to the SDP relaxations derived by the LS+ system. Finally, the addition of all ell1 inequalities eliminates all solutions not in the integral hull. For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) SA relaxation of Vertex Cover has integrality gap 2-epsilon. The integrality gap remains tight even for superconstant-level SA+ relaxations. We prove a tight lower bound for the number of tightenings that the SA system needs in order to prove the Pigeonhole Principle. We also prove sublinear and linear rank bounds for the La and SA systems respectively for the Tseitin tautology. Linear levels of the SA+ system treat highly unsatisfiable instances of fixed predicate-P constraint satisfaction problems over q-ary alphabets as fully satisfiable, when the satisfying assignments of the predicates P can be equipped with a balanced and pairwise independent distribution. We study the performance of the Lasserre system on the cut polytope. When the input is the complete graph on 2d+1 vertices, we show that the integrality gap is at least 1+1/(4d(d+1)) for the level-d SDP relaxation.

Page generated in 0.1159 seconds