• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Logical aspects of logical frameworks

Price, Mark January 2008 (has links)
This thesis provides a model-theoretic semantic analysis of aspects of the LF logical framework
2

Type-omega DPLs

Arkoudas, Konstantine 16 October 2001 (has links)
Type-omega DPLs (Denotational Proof Languages) are languages for proof presentation and search that offer strong soundness guarantees. LCF-type systems such as HOL offer similar guarantees, but their soundness relies heavily on static type systems. By contrast, DPLs ensure soundness dynamically, through their evaluation semantics; no type system is necessary. This is possible owing to a novel two-tier syntax that separates deductions from computations, and to the abstraction of assumption bases, which is factored into the semantics of the language and allows for sound evaluation. Every type-omega DPL properly contains a type-alpha DPL, which can be used to present proofs in a lucid and detailed form, exclusively in terms of primitive inference rules. Derived inference rules are expressed as user-defined methods, which are "proof recipes" that take arguments and dynamically perform appropriate deductions. Methods arise naturally via parametric abstraction over type-alpha proofs. In that light, the evaluation of a method call can be viewed as a computation that carries out a type-alpha deduction. The type-alpha proof "unwound" by such a method call is called the "certificate" of the call. Certificates can be checked by exceptionally simple type-alpha interpreters, and thus they are useful whenever we wish to minimize our trusted base. Methods are statically closed over lexical environments, but dynamically scoped over assumption bases. They can take other methods as arguments, they can iterate, and they can branch conditionally. These capabilities, in tandem with the bifurcated syntax of type-omega DPLs and their dynamic assumption-base semantics, allow the user to define methods in a style that is disciplined enough to ensure soundness yet fluid enough to permit succinct and perspicuous expression of arbitrarily sophisticated derived inference rules. We demonstrate every major feature of type-omega DPLs by defining and studying NDL-omega, a higher-order, lexically scoped, call-by-value type-omega DPL for classical zero-order natural deduction---a simple choice that allows us to focus on type-omega syntax and semantics rather than on the subtleties of the underlying logic. We start by illustrating how type-alpha DPLs naturally lead to type-omega DPLs by way of abstraction; present the formal syntax and semantics of NDL-omega; prove several results about it, including soundness; give numerous examples of methods; point out connections to the lambda-phi calculus, a very general framework for type-omega DPLs; introduce a notion of computational and deductive cost; define several instrumented interpreters for computing such costs and for generating certificates; explore the use of type-omega DPLs as general programming languages; show that DPLs do not have to be type-less by formulating a static Hindley-Milner polymorphic type system for NDL-omega; discuss some idiosyncrasies of type-omega DPLs such as the potential divergence of proof checking; and compare type-omega DPLs to other approaches to proof presentation and discovery. Finally, a complete implementation of NDL-omega in SML-NJ is given for users who want to run the examples and experiment with the language.
3

Higher-order proof translation

Sultana, Nikolai January 2015 (has links)
The case for interfacing logic tools together has been made countless times in the literature, but it is still an important research question. There are various logics and respective tools for carrying out formal developments, but practitioners still lament the difficulty of reliably exchanging mathematical data between tools. Writing proof-translation tools is hard. The problem has both a theoretical side (to ensure that the translation is adequate) and a practical side (to ensure that the translation is feasible and usable). Moreover, the source and target proof formats might be less documented than desired (or even necessary), and this adds a dash of reverse-engineering to what should be a system integration task. This dissertation studies proof translation for higher-order logic. We will look at the qualitative benefits of locating the translation close to the source (where the proof is generated), the target (where the proof is consumed), and in between (as an independent tool from the proof producer and consumer). Two ideas are proposed to alleviate the difficulty of building proof translation tools. The first is a proof translation framework that is structured as a compiler. Its target is specified as an abstract machine, which captures the essential features of its implementations. This framework is designed to be performant and extensible. Second, we study proof transformations that convert refutation proofs from a broad class of consistency-preserving calculi (such as those used by many proof-finding tools) into proofs in validity-preserving calculi (the kind used by many proof-checking tools). The basic method is very simple, and involves applying a single transformation uniformly to all of the source calculi's inferences, rather than applying ad hoc (rule specific) inference interpretations.
4

Efektyvus metodas baigtinei išvedimo paieškai tranzityviose multimodalinėse logikose gauti / Effective Method to Obtain Terminating Proof-Search in Transitive Multimodal Logics

Andrikonis, Julius 27 December 2011 (has links)
Disertacijoje nagrinėjamos žinių logikos su centrinio agento sąveikos aksioma. Tyrimas apima multimodalines logikas Kn, Tn, K4n ir S4n. Disertacijos tikslas – baigtinės išvedimo paieškos sekvenciniai skaičiavimai minėtoms logikoms. Darbe pristatomas naujas išvedimo paieškos baigtinumą užtikrinantis metodas, kuris yra pritaikomas minėtoms logikoms, o taip pat monomodalinėms logikoms K4 ir S4. / In the dissertation epistemic logics with central agent interaction axiom are analysed. The research covers multimodal logics Kn, Tn, K4n and S4n. The aim of the work is finite derivation search sequent calculi for the mentioned logics. A new method to obtain the termination of derivation search is presented in the thesis and this method is applied to the mentioned logics as well as to monomodal logics K4 and S4.
5

Effective Method to Obtain Terminating Proof-Search in Transitive Multimodal Logics / Efektyvus metodas baigtinei išvedimo paieškai tranzityviose multimodalinėse logikose gauti

Andrikonis, Julius 27 December 2011 (has links)
In the dissertation epistemic logics with central agent interaction axiom are analysed. The research covers multimodal logics Kn, Tn, K4n and S4n. The aim of the work is finite derivation search sequent calculi for the mentioned logics. A new method to obtain the termination of derivation search is presented in the thesis and this method is applied to the mentioned logics as well as to monomodal logics K4 and S4. / Disertacijoje nagrinėjamos žinių logikos su centrinio agento sąveikos aksioma. Tyrimas apima multimodalines logikas Kn, Tn, K4n ir S4n. Disertacijos tikslas – baigtinės išvedimo paieškos sekvenciniai skaičiavimai minėtoms logikoms. Darbe pristatomas naujas išvedimo paieškos baigtinumą užtikrinantis metodas, kuris yra pritaikomas minėtoms logikoms, o taip pat monomodalinėms logikoms K4 ir S4.
6

Logique de requêtes à la XPath : systèmes de preuve et pertinence pratique / XPath-like Query Logics : Proof Systems and Real-World Applicability

Lick, Anthony 08 July 2019 (has links)
Motivées par de nombreuses applications allant du traitement XML à lavérification d'exécution de programmes, de nombreuses logiques sur les arbresde données et les flux de données ont été développées dans la littérature.Celles-ci offrent divers compromis entre expressivité et complexitéalgorithmique ; leur problème de satisfiabilité a souvent une complexité nonélémentaire ou peut même être indécidable.De plus, leur étude à travers des approches de théories des modèles ou dethéorie des automates peuvent être algorithmiquement impraticables ou manquerde modularité.Dans une première partie, nous étudions l'utilisation de systèmes de preuvecomme un moyen modulaire de résoudre le problème de satisfiabilité des données logiques sur des structures linéaires.Pour chaque logique considérée, nous développons un calcul d'hyperséquentscorrect et complet et décrivons une stratégie de recherche de preuve optimaledonnant une procédure de décision NP.En particulier, nous présentons un fragment NP-complet de la logique temporelle sur les ordinaux avec données, la logique complète étant indécidable, qui est exactement aussi expressif que le fragment à deux variables de la logique du premier ordre sur les ordinaux avec données.Dans une deuxième partie, nous menons une étude empirique des principaleslogiques à la XPath décidables proposées dans la littérature.Nous présentons un jeu de tests que nous avons développé à cette fin etexaminons comment ces logiques pourraient être étendues pour capturer davantage de requêtes du monde réel sans affecter la complexité de leur problème de satisfiabilité.Enfin, nous analysons les résultats que nous avons recueillis à partir de notre jeu de tests et identifions les nouvelles fonctionnalités à prendre en charge afin d’accroître la couverture pratique de ces logiques. / Motivated by applications ranging from XML processing to runtime verificationof programs, many logics on data trees and data streams have been developed in the literature.These offer different trade-offs between expressiveness and computationalcomplexity; their satisfiability problem has often non-elementary complexity or is even undecidable.Moreover, their study through model-theoretic or automata-theoretic approaches can be computationally impractical or lacking modularity.In a first part, we investigate the use of proof systems as a modular way tosolve the satisfiability problem of data logics on linear structures.For each logic we consider, we develop a sound and complete hypersequentcalculus and describe an optimal proof search strategy yielding an NPdecision procedure.In particular, we exhibit an NP-complete fragment of the tense logic over data ordinals---the full logic being undecidable---, which is exactly as expressive as the two-variable fragment of the first-order logic on data ordinals.In a second part, we run an empirical study of the main decidable XPath-likelogics proposed in the literature.We present a benchmark we developed to that end, and examine how these logicscould be extended to capture more real-world queries without impacting thecomplexity of their satisfiability problem.Finally, we discuss the results we gathered from our benchmark, and identifywhich new features should be supported in order to increase the practicalcoverage of these logics.
7

Nondeterminism and Language Design in Deep Inference

Kahramanogullari, Ozan 13 April 2007 (has links) (PDF)
This thesis studies the design of deep-inference deductive systems. In the systems with deep inference, in contrast to traditional proof-theoretic systems, inference rules can be applied at any depth inside logical expressions. Deep applicability of inference rules provides a rich combinatorial analysis of proofs. Deep inference also makes it possible to design deductive systems that are tailored for computer science applications and otherwise provably not expressible. By applying the inference rules deeply, logical expressions can be manipulated starting from their sub-expressions. This way, we can simulate analytic proofs in traditional deductive formalisms. Furthermore, we can also construct much shorter analytic proofs than in these other formalisms. However, deep applicability of inference rules causes much greater nondeterminism in proof construction. This thesis attacks the problem of dealing with nondeterminism in proof search while preserving the shorter proofs that are available thanks to deep inference. By redesigning the deep inference deductive systems, some redundant applications of the inference rules are prevented. By introducing a new technique which reduces nondeterminism, it becomes possible to obtain a more immediate access to shorter proofs, without breaking certain proof theoretical properties such as cutelimination. Different implementations presented in this thesis allow to perform experiments on the techniques that we developed and observe the performance improvements. Within a computation-as-proof-search perspective, we use deepinference deductive systems to develop a common proof-theoretic language to the two fields of planning and concurrency.
8

Techniques de déduction automatique vues comme recherche de preuve en calcul des séquents

Farooque, Mahfuza 19 December 2013 (has links) (PDF)
Le raisonnement assisté par ordinateur joue un rôle crucial en informatique et en logique mathématique, de la programmation logique à la déduction automatique, en passant par les assistants à la démonstration. Le but de cette thèse est la conception d'un cadre général où différentes techniques de raisonnement assisté par ordinateur peuvent être implémentées, pour que ces dernières puissent collaborer, être généralisées, et être implémentées de manière plus sûre. Le cadre que je propose est un calcul des séquents appelé LKp(T), qui généralise un système de la littérature à la présence d'une théorie pour laquelle nous avons une procédure de décision, comme l'arithmétique linéaire. Cette thèse développe la méta-théorie de LKp(T), avec par exemple la propriété de complétude logique. Nous montrons ensuite comment le système spécifie une procédure de recherche de preuve qui émule une technique connue du domaine de la Satisfiabilité-modulo-théories appelée DPLL(T). Enfin, les tableaux de clauses et les tableaux de connexions sont d'autres techniques populaires en déduction automatique, d'une nature relativement différente de DPLL. Cette thèse décrit donc également comment ces techniques de tableaux peuvent être décrites en termes de recherche de preuve dans LKp(T). La simulation est donnée à la fois pour la logique propositionnelle et la logique du premier ordre, ce qui ouvre de nouvelles perspectives de généralisation et de collaboration entre les techniques de tableaux et DPLL, même en présence d'une théorie.
9

Nondeterminism and Language Design in Deep Inference

Kahramanogullari, Ozan 21 December 2006 (has links)
This thesis studies the design of deep-inference deductive systems. In the systems with deep inference, in contrast to traditional proof-theoretic systems, inference rules can be applied at any depth inside logical expressions. Deep applicability of inference rules provides a rich combinatorial analysis of proofs. Deep inference also makes it possible to design deductive systems that are tailored for computer science applications and otherwise provably not expressible. By applying the inference rules deeply, logical expressions can be manipulated starting from their sub-expressions. This way, we can simulate analytic proofs in traditional deductive formalisms. Furthermore, we can also construct much shorter analytic proofs than in these other formalisms. However, deep applicability of inference rules causes much greater nondeterminism in proof construction. This thesis attacks the problem of dealing with nondeterminism in proof search while preserving the shorter proofs that are available thanks to deep inference. By redesigning the deep inference deductive systems, some redundant applications of the inference rules are prevented. By introducing a new technique which reduces nondeterminism, it becomes possible to obtain a more immediate access to shorter proofs, without breaking certain proof theoretical properties such as cutelimination. Different implementations presented in this thesis allow to perform experiments on the techniques that we developed and observe the performance improvements. Within a computation-as-proof-search perspective, we use deepinference deductive systems to develop a common proof-theoretic language to the two fields of planning and concurrency.
10

Computational Issues in Calculi of Partial Inductive Definitions

Kreuger, Per January 1995 (has links)
We study the properties of a number of algorithms proposed to explore the computational space generated by a very simple and general idea: the notion of a mathematical definition and a number of suggested formal interpretations ofthis idea. Theories of partial inductive definitions (PID) constitute a class of logics based on the notion of an inductive definition. Formal systems based on this notion can be used to generalize Horn-logic and naturally allow and suggest extensions which differ in interesting ways from generalizations based on first order predicate calculus. E.g. the notion of completion generated by a calculus of PID and the resulting notion of negation is completely natural and does not require externally motivated procedures such as "negation as failure". For this reason, computational issues arising in these calculi deserve closer inspection. This work discuss a number of finitary theories of PID and analyzethe algorithmic and semantical issues that arise in each of them. There has been significant work on implementing logic programming languages in this setting and we briefly present the programming language and knowledge modelling tool GCLA II in which many of the computational prob-lems discussed arise naturally in practice. / <p>Also published as SICS Dissertation no. SICS-D-19</p>

Page generated in 0.0439 seconds