• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1126
  • 548
  • 420
  • 178
  • 111
  • 49
  • 35
  • 28
  • 22
  • 20
  • 18
  • 18
  • 17
  • 12
  • 12
  • Tagged with
  • 3117
  • 607
  • 414
  • 279
  • 269
  • 256
  • 252
  • 205
  • 205
  • 198
  • 198
  • 183
  • 173
  • 162
  • 161
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Advances in Iterative Probabilistic Processing for Communication Receivers

Jakubisin, Daniel Joseph 27 June 2016 (has links)
As wireless communication systems continue to push the limits of energy and spectral efficiency, increased demands are placed on the capabilities of the receiver. At the same time, the computational resources available for processing received signals will continue to grow. This opens the door for iterative algorithms to play an increasing role in the next generation of communication receivers. In the context of receivers, the goal of iterative probabilistic processing is to approximate maximum a posteriori (MAP) symbol-by-symbol detection of the information bits and estimation of the unknown channel or signal parameters. The sum-product algorithm is capable of efficiently approximating the marginal posterior probabilities desired for MAP detection and provides a unifying framework for the development of iterative receiver algorithms. However, in some applications the sum-product algorithm is computationally infeasible. Specifically, this is the case when both continuous and discrete parameters are present within the model. Also, the complexity of the sum-product algorithm is exponential in the number of variables connected to a particular factor node and can be prohibitive in multi-user and multi-antenna applications. In this dissertation we identify three key problems which can benefit from iterative probabilistic processing, but for which the sum-product algorithm is too complex. They are (1) joint synchronization and detection in multipath channels with emphasis on frame timing, (2) detection in co-channel interference and non-Gaussian noise, and (3) joint channel estimation and multi-signal detection. This dissertation presents the advances we have made in iterative probabilistic processing in order to tackle these problems. The motivation behind the work is to (a) compromise as little as possible on the performance that is achieved while limiting the computational complexity and (b) maintain good theoretical justification to the algorithms that are developed. / Ph. D.
322

The Optimum Location for Access Point Deployment based on RSS for Indoor Communication

Shareef, O.A., Abdulwahid, M.M., Mosleh, M.F., Abd-Alhameed, Raed 03 1900 (has links)
Yes / In indoor wireless communication networks, the optimal locations had been known to deploy the access points (AP's) which has a significant impact on improving various aspects of network operation, management, and coverage. In addition, develop the behavioral characteristics of the wireless network. The most used approach for localization purposes was based on Received Signal Strength (RSS) measurements, which is widely used in the wireless network. As well as, it can be easily accessed from different operating systems. In this paper, we proposed an optimal AP localization algorithm based on RSS measurement obtained from different received points. This localization algorithm works as a complementary to the 3D Ray tracing model based REMCOM wireless InSite software and considered two-step localization approach, data collection phase, and localization phase. Obtained result give relatively high accuracy to select the optimum location for AP compare with other selected locations. It is worth to mention that effect of different building materials on signal propagation has been considered with specifying the optimum location of deployment. Furthermore, channel characterizations that based on path losses have been considered as a confirmation for the optimum location being selected.
323

Benchmarking Methods For Predicting Phenotype Gene Associations

Tyagi, Tanya 16 September 2020 (has links)
Assigning human genes to diseases and related phenotypes is an important topic in modern genomics. Human Phenotype Ontology (HPO) is a standardized vocabulary of phenotypic abnormalities that occur in human diseases. Computational methods such as label-propagation and supervised-learning address challenges posed by traditional approaches such as manual curation to link genes to phenotypes in the HPO. It is only in recent years that computational methods have been applied in a network-based approach for predicting genes to disease-related phenotypes. In this thesis, we present an extensive benchmarking of various computational methods for the task of network-based gene classification. These methods are evaluated on multiple protein interaction networks and feature representations. We empirically evaluate the performance of multiple prediction tasks using two evaluation experiments: cross-fold validation and the more stringent temporal holdout. We demonstrate that all of the prediction methods considered in our benchmarking analysis have similar performance, with each of the methods outperforming a random predictor. / Master of Science / For many years biologists have been working towards studying diseases, characterizing dis- ease history and identifying what factors and genetic variants lead to diseases. Such studies are critical to working towards the advanced prognosis of diseases and being able to iden- tify targeted treatment plans to cure diseases. An important characteristic of diseases is that they can be expressed by a set of phenotypes. Phenotypes are defined as observable characteristics or traits of an organism, such as height and the color of the eyes and hair. In the context of diseases, the phenotypes that describe diseases are referred to as clinical phenotypes, with some examples being short stature, abnormal hair pattern, etc. Biologists have identified the importance of deep phenotyping, which is defined as a concise analysis that gathers information about diseases and their observed traits in humans, in finding genetic variants underlying human diseases. We make use of the Human Phenotype Ontology (HPO), a standardized vocabulary of phenotypic abnormalities that occur in human diseases. The HPO provides relationships between phenotypes as well as associations between phenotypes and genes. In our study, we perform a systematic benchmarking to evaluate different types of computational approaches for the task of phenotype-gene prediction, across multiple molecular networks using various feature representations and for multiple evaluation strategies.
324

Study of Wave Propagation in Damaged Composite Material Laminates

Lane, Ryan Jeffrey 12 December 2018 (has links)
The characteristics of carbon fiber composites have enabled these materials to be accepted as replacements for metal parts in industry. However, due to their unsymmetrical material properties, carbon fiber composites are susceptible to damage, such as a delamination, which can cause premature failure in the structure. This has resulted in the need for nondestructive testing methods that can provide quick, reliable results so that these parts can be tested while in service. In this study, an approach was examined that involved a pencil lead break to excite multiple wave modes in a composite plate in an effort to identify key characteristics based on the wavespeed and frequency. These characteristics were then compared to models based on boundary conditions to generate dispersion curves using the transfer matrix method for whole composite plates that were either undamaged or damaged. To first test this approach, experiments were performed on multilayer isotropic plates and then on a composite plate. The results for all cases showed that modes could be excited by the pencil lead break in the undamaged region of the plates that were not theoretical possible in a delaminated region. Also modes that were specific to the delaminated region were excited and this allowed for a clear comparison between the two regions. This approach could be placed into practice to provide routine testing to detect delamination for in-service, carbon fiber composite parts. / Master of Science / The physical properties of high strength and low weight and the economic benefits of carbon fiber composites has resulted in these materials replacing metals in several industries. It is important, however, to be aware that the change in materials used impacts the different types of damage composites experience compared to conventional metals. One type of damage that could cause a composite part to fail is a delamination or a separation of layers. In order to identify if this damage has occurred, it is beneficial to have an inspection technique that will not damage the part. In this study, a technique was tested that involved breaking a piece of pencil lead on a plate in order to generate multiple wave modes that would propagate in the plate. Based on boundary conditions caused by the damage in the plate, the speed of the wave and frequency content could be compared to an undamaged plate to identify a delamination. A model was created to compare experimental results and demonstrated that using wavespeed and frequency could identify a delamination. The experimental results compared well with the model dispersion curves for a plate with and without a delamination suggesting this approach could be placed into practice to provide routine testing to detect delamination for in-service, carbon fiber composite parts.
325

Novel Site-Specific Techniques for Predicting Radio Wave Propagation

Sheethalnath, Praveen T. 22 May 2001 (has links)
This thesis addresses various aspects related to site-specific propagation prediction using ray tracing techniques. Propagation prediction based on ray tracing techniques requires that all the different physical objects, which affect the propagation of radio waves, be modeled. The first part of the thesis concentrates on modeling the buildings and the terrain for the above-mentioned application. A survey of the various geographic products that are available to model the environment is presented. The different methods used to model the terrain are analyzed and the most suitable method for a ray based application is suggested. A method to model the buildings in an environment from commercially available data is described. A novel method to combine the building information with the terrain information is presented. An in depth discussion of deterministic propagation prediction using ray tracing is presented in the latter half of the thesis. An overview of the various ray based algorithms that exists in the literature are presented and the limitations and the computational complexity of ray based methods are discussed. All ray based algorithms model the receivers as point objects and predict the propagation characteristics at a particular point in space. However, to optimize the design of a wireless broadcast or a point to multi point system such as a Wireless LAN (WLAN) or a cellular system, propagation characteristics at multiple points in space need to be known. The standard ray tracing algorithms can be notoriously time consuming when used to predict the characteristics of multiple receivers. A new, computationally less intensive algorithm to predict the propagation characteristics of multiple receivers is described. This algorithm significantly reduces the computation time by using "grid mode" predictions for broadcast channels. / Master of Science
326

Release of Juvenile Mussels into a Fish Hatchery Raceway: a Comparison of Techniques

Hanlon, Shane David 27 April 2000 (has links)
Recent efforts to restore depressed or extirpated populations of freshwater mussels have focused on artificial propagation as an effective and practical conservation strategy. Although artificially cultured juveniles have been produced and released to the wild, no study has investigated the best time of year or the best developmental stage to release these juveniles. Several experiments were conducted to gain knowledge of appropriate culture and release techniques. Juvenile wavyrayed lampmussels (<I>Lampsilis fasciola</I>) were artificially propagated in the laboratory and subsequently release into a fish hatchery raceway during June, September and March. Juveniles released in June experienced a gradual decline in survival rate, with 50% survival after 72 days and stable survival thereafter until 200 days. Juveniles released in September and March experienced high mortality within the first month, and were unsuccessful in surviving the cold water conditions typical of those seasons. Temperature was strongly associated with growth; thus, juveniles released in June exhibited considerably greater growth than those released in September and March. Survival was positively correlated with shell length in the first 32 days post-metamorphosis. Fall and spring survival values, shell length-frequency data, and a significant increase in overwinter mean shell length (p = 0.045) suggest that overwinter survival is size-dependent. Survival rates of juveniles released in June exceed those of previous culture studies reported in the literature. From these results, I suggest that the best time for release of propagated juvenile freshwater mussels should be at the beginning of the growing season in late spring, when water temperatures exceed 15 degrees C (plus/minus 1°C). Offspring of four, gravid female <I>L. fasciola</I> were tested to evaluate the extent of variability in growth and survival among brood stock. Comparison of growth and survival of progeny showed significantly lower performance of only one female (p < 0.05). Although results indicate variability in growth and survival among broods, it is not known whether heritabilities or physiological fitness caused this variability. Infested fish (IF), newly metamorphosed juveniles (NMJ) and juveniles cultured for 1 month (CJ) were released to a fish hatchery raceway in order to determine the most appropriate developmental stage to release juveniles. Significant differences were recorded among the three release methods, with CJ attaining the greatest growth (2.47 mm plus/minus 0.02), NMJ with the next best growth (1.86 mm plus/minus 0.02), and IF exhibiting the least growth (1.34 mm plus/minus 0.02) (p < 0.0001). Survival among release methods was not statistically different because of high variability within each release method. High mortality from predacious fish was presumably the cause of this variability. With minimal predation, L. fasciola experienced 82.2% (plus/minus 3.6) survival at 90 days. Survival of hatchery-reared juveniles was comparably higher than laboratory-reared juveniles, suggesting that culturing freshwater mussels in a hatchery raceway is a preferable alternative to laboratory culture. An experiment was conducted to compare growth of confined and unconfined juvenile L. fasciola released to a fish hatchery raceway. After 72 days, juveniles confined to small open dishes within the raceway (1.04 mm plus/minus 0.08) exhibited significantly less growth than juveniles released to the raceway that were not held in containers (2.15 mm plus/minus 0.07) (p < 0.0001). Results of additional comparisons with compiled growth data suggest that juvenile growth is retarded when cultured in small dishes. / Master of Science
327

Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth

Prasanna Kumar, Siddharth 21 August 2017 (has links)
Understanding failure mechanics of mechanical equipment is one of the most important aspects of structural and aerospace engineering. Crack growth being one of the major forms of failure in structural components has been studied for several decades to achieve greater reliability and guarantee higher safety standards. Conventional approaches using the finite element framework provides accurate solutions, yet they require extremely complicated numerical approaches or highly fine mesh densities which is computationally expensive and yet suffers from several numerical instabilities such as element entanglement or overly soften element behavior. The eXtended Finite Element Method (XFEM) is a relatively recent concept developed for modeling geometric discontinuities and singularities by introducing the addition of new terms to the classical shape functions in order to allow the finite element formulation to remain the same. XFEM does not require the necessity of computationally expensive numerical schemes such as active remeshing and allows for easier crack representation. In this work, verifies the validity of this new concept for quasi-static crack growth in tension with Abaqus' XFEM is employed. In the course of the work, the effect of various parameters that are involved in the modelling of the crack are parametrically analyzed. The load-displacement data and crack growth were used as the comparison criterion. It was found that XFEM is unable to accurately represent crack growth in the models in the elastic region without direct manipulation of the material properties. The crack growth in the plastic region is found to be affected by certain parameters allowing us to tailor the model to a small degree. This thesis attempts to provide a greater understanding into the parametric dependencies of XFEM crack growth. / Master of Science / Crack propagation is one of the major causes of failure in equipment in structural and aerospace engineering. The study of fracture and crack growth has been taking place for decades in an effort to increase quality of design and to ensure higher standards of safety. In the past, an accurate representation of crack growth within a specimen using conventional numerical analysis was computationally expensive. The eXtended Finite Element Method (XFEM) is a concept introduced that would reduce computational effort yet improving the fidelity of the analysis while allowing for easier representation of crack growth. This thesis, verifies the validity of XFEM in simulating crack growth in a specimen undergoing tension using a commercially available code, Abaqus. The various parameters involved in the modeling of this crack and their effects are studied. The study had shown that the inaccuracy of XFEM in its ability to model crack growth, however, it gives us some understanding into certain parameters that would allow us to tailor the model to better represent experimental data.
328

The reproductive biology of Clematis addisonii

Edwards, Rhonda L. 02 May 2009 (has links)
<i>Clematis addisonii</i> Britton (Ranunculaceae) is a Virginia endemic restricted to calcareous soils in a four county region of the Ridge and Valley Province in Virginia. A two year study of the reproductive biology of this species reveals that it is self-compatible, showing no significant reduction in fecundity following self-pollinations. Morphological observations indicate that this species is protogynous. <i>In vivo</i> pollen tube growth supports this conclusion. Field observations suggest that the morphological pistillate phase lasts significantly longer than the staminate phase and is sufficient enough in length that cross-pollination is likely to occur during the time period preceding the staminate phase. The secretion of nectar from the onset of anthesis enhances the probability that outcrossing will occur prior to the presence of self-pollen in flowers. These findings suggest that, in spite of self-compatibility, populations of <i>Clematis addisonii</i> are capable of maintaining high levels of outcrossing by virtue of protogyny and nectar secretion from the onset of anthesis. / Master of Science
329

Analysis of Path Loss from a Transmitter in an Aircraft Cabin to an Exterior Fuselage-Mounted Antenna

Wang-Hurst, Kathy Weiquan 08 January 2008 (has links)
It is important to investigate the threat posed to commercial aircraft by on board electronic transmitters in the passenger cabin and the cargo holds of large transport aircraft. These transmitters may be in the form of unintentional use of portable electronic devices or even intentional radio frequency (RF) threat sources from terrorists. Thus, it is of interest to determine the "interference path loss" (IPL) from a transmitting device inside the cabin of such aircraft to the antenna terminals of a potential victim system of the aircraft. Past studies have concentrated on measurements. These efforts to measure IPL directly have demonstrated that accurate and repeatible measurements are difficult to obtain. Very little modeling work has been done successfully to understand the IPL on aircraft. In this thesis, we propose a 3-step methodology to quantify the interference path loss (IPL). We then apply this methodology to a broad class of aircraft and show results. To validate our results, we compare our findings to known measurements and discuss possible sources of errors. Finally we suggest areas of improvement to our analysis and propose future work. / Master of Science
330

RF propagation model for direct sequence spread spectrum communication systems

Thomas, Phillip Andre 01 January 1998 (has links)
No description available.

Page generated in 0.1069 seconds