• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of fracture in heavy steel welded beam-to-column connection submitted to cyclic loading by finite elements

Lequesne, Cédric 25 June 2009 (has links)
During the earthquake in Japan and California in the 1990s, some weld beam-to-column connections had some cracks in heavy rigid frame steel building. Consequently it is required to assess the performance of the welded connection in term of rotation capacity and crack propagation strength. Some experimental tests have been performed. The weld connections were submitted to cyclic loading with increasing amplitude until macro crack event. However the crack phenomenon depends on many parameters: the geometry, the material, the welding process. For this reason, it is interesting to develop a finite element modeling of this connection to complete these experiments and perform a parametric study. The welded connection is modeled by three dimensional mixed solid elements. The constitutive law is elastoplastic with isotropic hardening identified for the base metal and the weld metal. The crack propagation is modeled by cohesive zone model. The parameters of the cohesive zone model have been identified by inverse method with the modeling of three point bend tests of a pre-cracked sample performed on the base and weld metal. The fatigue damage generated by the cyclic loading is computed by the fatigue continuum damage model of Lemaitre and Chaboche and it is coupled with the cohesive zone model. The damage and the crack propagation depend on the residual stresses generated by the welding process. They have been computed by a simulation of this process with a thermo mechanical finite element analysis. This thesis presents the used models and the results compared with the experimental tests.
2

Simulation par éléments finis de la propagation de fissures de fatigue dans les matériaux polycristallins imagés par tomographie aux rayons X / Numerical simulation of fatigue crack propagation in real polycrystals imaged by X ray tomography

Li, Jia 15 December 2015 (has links)
La propagation des fissures courtes de fatigue dans un matériau polycristallin dépend fortement de la microstructure. Bien que de nombreuses études de caractérisation et de modélisation existent sur le sujet, la prédiction du chemin et de la vitesse de propagation de ce type de fissure n'est pas encore possible aujourd'hui.Afin de bien comprendre les mécanismes de propagation, la caractérisation in-situ d'un échantillon par la tomographie aux rayons X a été réalisée à l'ESRF en combinant deux techniques de caractérisation. La tomographie par Contraste de Diffraction (DCT) qui est une méthode non destructive permettant de caractériser en 3D la morphologie et l'orientation des grains constitutifs de la microstructure, à l'état non-déformé, et la tomographie par Contraste de Phase (PCT) qui permet d'obtenir la forme de fissure à divers étapes de la vie de l'éprouvette. Grâce à ces informations, il est possible de simuler la propagation de fissure en utilisant un maillage réaliste reconstruit à partir des images tomographiques. Dans ce travail, une étude de l'anisotropie de comportement élastique est effectuée dans un maillage microstructural 3D reconstruit à partir des images tomographiques. Cette étude permet de comparer les tenseurs de déformation élastique moyennés à chaque grain avec les mesures expérimentale. Ensuite, une nouvelle méthodologie est proposée pour simuler la propagation de fissure. Issue d'une simulation en plasticité cristalline, la direction et la vitesse de la propagation de fissure est déterminée par un post-traitement, ce qui permet de propager la fissure par remaillage. Cette méthode est appliquée dans un premier temps à un monocristal pré-fissuré pour prédire le trajet de fissuration en fonction des systèmes de glissement activés. L'ensemble de la démarche est enfin appliqué au polycristal complet imagé par tomographie. Le rôle du joint de grains et la vitesse de propagation sont également analysés. En comparant les résultats de simulation avec les mesures expérimentales, le critère de la propagation de fissure est discuté. / The short fatigue crack propagation in polycrystal materials depends strongly on microstructure. Although numerous studies of characterisation and of simulation, the prediction of the short fatigue crack propagation remains a challenge.In order to understand the mechanisms of short fatigue crack propagation, an in-situ characterisation by X-ray tomography was carried out at ESRF, using two techniques of tomography. Diffraction Contrast Tomography (DCT) that is a non-destructive method can be used to obtain 3D morphology and grain orientations in an undeformed state of polycrystal materials. Couple with Phase Contrast Tomography (PCT), it allows to characterise the short fatigue crack propagation at different loading stages. Access to this information, it is possible to simulate the short fatigue crack propagation using a 3D reel microstructural mesh reconstructed from the tomographic images.In this work, the elastic anisotropic behaviour in a 3D microstructural mesh is performed. The elastic strain tensors averaged in grains are also compared to the experimental measurements. Then, a new numerical approach is proposed to simulate crack propagation. From a crystal plasticity FE simulation, the crack growth direction is determined by a post processing. Next, the crack is propagated through remeshing. This approach is firstly applied to the single crystals, then to the polycrystal mesh reconstructed from the tomographic images. The grain boundary effects and the crack growth rate are also analysed. By comparing between simulation and experimental crack, the damage indicator is discussed at the end.
3

Amorçage et propagation des fissures de fatigue dans les alliages d'aluminium 2050-T8 et 7050-T7451 / Fatigue crack initiation and propagation in aluminium alloys 2050-T8 and 7050-T7451

Nizery, Erembert 04 December 2015 (has links)
Les alliages d'aluminium utilisés dans les structures aéronautiques (fuselage, voilure) sont soumis à des chargements cycliques, faisant de la fatigue l'un des facteurs dimensionnant. Dans cette thèse, les mécanismes d'amorçage de ces fissures de fatigue – au niveau des particules intermétalliques – et de micropropagation sont étudiés expérimentalement et numériquement sur les alliages 2050-T8 et 7050-T7451. Les analyses des premiers chapitres portent sur la description des particules intermétalliques qui sont les plus susceptibles de donner lieu à une amorce de fissure dans la matrice d'aluminium. Les effets de la nature des particules et de leur taille sont quantifiés. La proximité entre les particules intermétalliques et les pores y est décrite. Cette analyse expérimentale fait intervenir des observations de surface en microscopie électronique à balayage (MEB), ainsi que des caractérisations tridimensionnelles (3D) réalisées à l'aide de la tomographie par rayonnement synchrotron. Dans les chapitres suivants, les analyses traitent de la prévision des chemins de fissuration à l'échelle d'un grain. Elles s'appuient sur des observations expérimentales de surface et des simulations de plasticité cristalline 3D pour comprendre les chemins de fissuration. Un modèle d'endommagement tenant compte de la cristallographie est alors proposé pour simuler la propagation de fissure par éléments finis. / Aluminium alloys used for aerospace structures (wing, fuselage) are subjected to cyclic loading. Fatigue properties of such alloys are therefore taken into account for the design of such parts. In this thesis, initiation mechanisms of fatigue cracks – near intermetallic particles – and micropropagation are studied experimentally and numerically on alloys 2050-T8 and 7050-T7451. In the first chapters, the analysis focuses on intermetallic particles which are most prone to initiate a fatigue crack in the aluminium matrix. The effects of the nature of particles as well as their size are quantified. The proximity between intermetallic particles and pores is described. This experimental analysis use surface observations obtained with a scanning electron microscope (SEM), and three-dimensional (3D) characterizations using synchrotron tomography. In the last chapters, analysis are oriented towards the prediction of crack paths at the grain size. They rely on surface experimental observations and 3D crystal plasticity modelling in order to understand crack paths. A damage model taking into account crystallography is proposed to simulate crack propagation using the finite element method.
4

An adaptive model reduction approach for 3D fatigue crack growth in small scale yielding conditions / Une approche adaptative avec réduction de modèle pour la propagation tridimensionnelle des fissures de fatigue en condition de plasticité confinée

Galland, Florent 04 February 2011 (has links)
Il est connu depuis des décennies que la propagation des fissures de fatigue dans les matériaux élastoplastiques est très sensible à l’histoire du chargement car le comportement non-linéaire du matériau peut avoir une grande influence sur les vitesses de propagation. Cependant, le calcul brut de millions de cycles de fatigue avec des comportements matériaux non-linéaires sur des structures tridimensionnelles réalistes conduirait à des temps de calcul prohibitifs. Ainsi, nous proposons de coupler deux approches de réduction de modèle a priori et a posteriori, afin de diminuer considérablement le coût de calcul de ce type de problèmes. Tout d’abord, considérant l’hypothèse de plasticité confinée, une stratégie de réduction de modèle a posteriori du comportement plastique de la structure fissurée est proposée. Le modèle réduit ainsi obtenu fournit incrémentalement l’état plastique autour du front de fissure, duquel est déduite la vitesse instantanée de la fissure. De plus, une seconde approche de réduction de modèle, a priori cette fois, est aussi mise en place afin d’accélérer encore plus les temps de résolution du problème global. Cette approche a priori consiste à construire incrémentalement —et sans calculs préalables— une base réduite spécifique à chaque cas-test, en extrayant de l’information des champs de déplacement de la structure au cours du temps et pendant la propagation éventuelle de la fissure. Ainsi, les champs de déplacement solutions de la géométrie fissurée réactualisée sont vus comme une combinaison linéaire de cette base réduite de vecteurs. La méthode numérique considérée ici est la méthode des éléments finis. De fait, pendant la propagation de la fissure, la discrétisation spatiale du modèle doit être réactualisée afin d’être conforme avec le front de la fissure. Dans ce but, une technique spécifique de déformation de maillage est utilisée, et permet de discrétiser la géométrie variable du modèle avec des maillages de même topologie. Cette technique de déformation de maillage apparaît comme une étape clé de la stratégie de réduction de modèle. Finalement, une approche adaptative est construite autour de cette stratégie. Elle permet de garantir la qualité des résultats obtenus par rapport à un critère de précision donné. La précision et l’efficacité de cette stratégie globale sont démontrées à travers de nombreux exemples bidimensionnels et tridimensionnels dans le cadre de propagation de fissure en model, de même que pour un exemple industriel d’une pièce fissurée d’hélicoptère. / It has been known for decades that fatigue crack propagation in elastic-plastic media is very sensitive to load history since the nonlinear behavior of the material can have a great influence on propagation rates. However, the raw computation of millions of fatigue cycles with nonlinear material behavior on tridimensional structures would lead to prohibitive calculation times. In this respect, we propose a global model reduction strategy, mixing both the a posteriori and a priori approaches in order to drastically decrease the computational cost of these types of problems. First, the small scale yielding hypothesis is assumed, and an a posteriori model reduction of the plastic behavior of the cracked structure is performed. This reduced model provides incrementally the plastic state in the vicinity of the crack front, from which the instantaneous crack growth rate is inferred. Then an additional a priori model reduction technique is used to accelerate even more the time to solution of the whole problem. This a priori approach consists in building incrementally and without any previous calculations a reduced basis specific to the considered test-case, by extracting information from the evolving displacement field of the structure. Then the displacement solutions of the updated crack geometries are sought as linear combinations of those few basis vectors. The numerical method chosen for this work is the finite element method. Hence, during the propagation the spatial discretization of the model has to be updated to be consistent with the evolving crack front. For this purpose, a specific mesh morphing technique is used, that enables to discretize the evolving model geometry with meshes of the same topology. This morphing method appears to be a key component of the model reduction strategy. Finally, the whole strategy introduced above is embedded inside an adaptive approach, in order to ensure the quality of the results with respect to a given accuracy. The accuracy and the efficiency of this global strategy have been shown through several examples; either in bidimensional and tridimensional cases for model crack propagation, including the industrial example of a helicopter structure.
5

Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel / Influence de la transformation de phase métallurgique sur la propagation des fissures de 15-5PH et 16MND5

Liu, Jikai 07 December 2012 (has links)
Cette thèse porte sur l’influence des transformations de phases solide-solide sur la propagation de fissure. On souhaite ainsi mieux comprendre les variations de ténacité en cours de soudage par exemple, ou bien pendant la réparation d’une fissure. Dans ce travail, la ténacité est obtenue à partir de l’intégrale J. Il existe de nombreuses méthodes expérimentales permettant d’obtenir la ténacité critique JIC mais qui sont difficilement applicables pour des essais se déroulant pendant une transformation de phase. C’est pourquoi nous avons proposé une méthode couplant essai mécanique et mesure par corrélation d’images avec de la simulation par éléments finis. Les essais sont réalisés sur de simples éprouvettes plates pré fissurées, faciles à usiner et simple à chauffer par induction. Les essais sont conduits pour différentes températures et jusqu’à rupture. En sus des mesures d’efforts et déplacements de traverse, la corrélation d’images nous fourni également les champs de déplacement sur chaque face de l’éprouvette. Chaque essai est ensuite simulé par éléments finis où la ténacité critique est calculée par la méthode G-Theta au maximum de la charge supportée par l’éprouvette. Les simulations précédentes intègrent les conditions aux limites obtenues par corrélation et le comportement mécanique considéré est celui que nous avons identifié sur des essais de caractérisation. Deux nuances de matériau ont été étudiées avec cette méthode ; l’acier inoxydale 15-5PH ainsi que l’acier ferritique 16MND5. Pour ces deux matériaux, différentes températures d’essai ont été choisies avant, pendant et après la transformation pour effectuer les essais de rupture ainsi que de caractérisation du comportement mécanique. Les résultats de cette étude montrent que la transformation de phase peut avoir un impact non négligeable sur la ténacité. Ainsi, pour le 15-5PH, le taux d’austénite résiduel est un facteur important et les essais pendant la transformation martensitiques montrent que la ténacité critique peut être inférieure pendant celle ci à celle du matériau purement austénitique. Dans le cas du 16MND5, la ténacité est beaucoup plus faible à 600°C (et bainitique) qu’à température ambiante ce qui est assez logique. Par contre, lors du refroidissement, depuis 600° (austénitique) jusqu’à la température ambiante (bainitique), nous avons obtenu une ténacité critique relativement constante. En conclusion, cette étude apporte une solution quant à la mesure de la ténacité critique de matériau pendant des transformations de phases, ce que ne permettent pas forcément les essais normalisés. Pour le 15-5PH, la ténacité critique semble évoluer pendant la transformation martensitique et est assez dépendante du taux d’austénite résiduelle. Il semble par contre que pour le 16MND5, la ténacité critique soit assez peu dépendante de la fraction volumique d’austénite et la valeur obtenue varie peu au cours du refroidissement du matériau depuis 600°C. / Ou study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200°C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200°C has higher fracture toughness than pure martensitic 15-5PH at 200°C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated to 600°C. On the other hand, the material at 600°C just before isothermal bainite transformation after the austenitization during cooling process also has higher fracture toughness than the one at 600°C before austenitization. These two conclusions are consistent well with the result of 15-5PH. But the final situation of 16MND5 after one cycle heat treatment has a slightly smaller J1C than the receiving situation. It means that one cycle heat treatment hasn't an significant influence on 16MND5fracture toughness. Conclusions show that one should pay attention to the heating period before austenitization of the substrate material when people do the welding as the higher temperature will bring the lower fracture toughness during this process. While during cooling period, the fracture toughness doesn't change a lot during, before or after the cooling induced phase transformation. Even for 15-5PH, it has a better fracture toughness after the martensite transformation than before.

Page generated in 0.1033 seconds