• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymerase chain reaction based cloning of acetate kinase in Propionibacterium acidipropionici /

Liao, Yu-Hua, January 2003 (has links)
Thesis (M.S.)--Ohio State University, 2003. / Includes bibliographical references (leaves 59-68).
2

Metabolic engineering for enhanced propionic acid fermentation by Propionibacterium acidipropionici

Suwannakham, Supaporn, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xix, 258 p.; also includes graphics (some col.) Includes bibliographical references (p. 199-212). Available online via OhioLINK's ETD Center
3

Polymerase chain reaction based cloning of acetate kinase in propionibacterium acidipropionici

Liao, Yu-Hua 04 February 2004 (has links)
No description available.
4

Produção de ácidos orgânicos C-3 e C-4 através da fermentação de diferentes substratos por Propionibacterium acidipropionici / Organic acids production from different substrates by Propionibacterium acidipropionici

Duarte, Juliana Canto, 1984- 12 October 2014 (has links)
Orientador: Gustavo Paim Valença / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-26T07:00:33Z (GMT). No. of bitstreams: 1 Duarte_JulianaCanto_D.pdf: 4804028 bytes, checksum: 8a14cd7e6bdf26f6d7000302437af726 (MD5) Previous issue date: 2014 / Resumo: Foram realizadas fermentações em batelada do sorbitol, sacarose, glicerol e glicose por Propionibacterium acidipropionici livre em biorreatores. As fermentações do sorbitol forneceram a maior concentração final de ácido propiônico (39,5±5,2 g L-1) e as fermentações da glicose forneceram a menor concentração final de ácido propiônico (23,9±2,1 g L-1). Apenas as fermentações do glicerol produziram n-propanol e sua concentração final foi de 1,7±0,1 g L-1, além disso, o ácido acético não foi produzido nas fermentações do glicerol. As fermentações da sacarose forneceram a maior concentração final de ácido acético (10,9±0,0 g L-1). O maior valor de produtividade do ácido propiônico foi obtido nas fermentações do sorbitol (0,60 g L-1 h-1). Fermentações do sorbitol e da sacarose em batelada utilizando células de P. acidipropionici livres e imobilizadas em montmorilonita K10 foram realizadas em três ciclos sequenciais com reciclo celular. As concentrações finais de ácido propiônico para as fermentações do sorbitol com células livres foram 39,5±5,2; 35,8±1,4 e 34,4±1,9 g L-1 e para células imobilizadas foram 33,1±0,7; 37,2±0,6 e 36,6±0,4 g L-1, para o primeiro, segundo e terceiro ciclos sequenciais, respectivamente. O maior valor de produtividade e de rendimento do ácido propiônico nas fermentações do sorbitol foi obtido para o primeiro ciclo com células livres: 0,60 g L-1 h-1 e 0,613 g g-1, respectivamente. As concentrações finais de ácido propiônico para as fermentações da sacarose com células livres foram 33,4±0,3; 31,3±0,9 e 31,1±0,1 g L-1 e para células imobilizadas foram 26,9±0,6; 29,1±0,3 e 29,5±0,8 g L-1 para o primeiro, segundo e terceiro ciclos sequenciais, respectivamente. A produtividade e o rendimento do ácido propiônico foram maiores no primeiro ciclo para células livres: 0,48 g L-1 h-1 e 0,409 g g-1, respectivamente. Foram realizadas co-fermentações de glicose:glicerol em duas razões mássicas (1:1 e 2:1) em batelada utilizando P. acidipropionici livre e imobilizada em montmorilonita K10. Apenas nas co-fermentações foi observada a produção do ácido lático e trealose além dos ácidos acético, succínico e propiônico. A maior concentração final de ácido propiônico foi obtida para as co-fermentações glicose:glicerol de razão mássica 2:1 com células de P. acidipropionici livres (31,4±0,3 g L-1) e a menor concentração final foi obtida nas co-fermentações de razão mássica 1:1 para células imobilizadas (23,9±0,8 g L-1). O ácido acético foi produzido apenas nas co-fermentações de razão mássica 2:1 para células livres (0,3±0,4 g L-1) e imobilizadas (1,1±0,2 g L-1). A maior concentração final de ácido lático foi obtida nas co-fermentações de razão mássica 1:1 para células livres (10,5±0,3 g L-1) e a menor concentração final foi obtida nas co-fermentações de razão mássica 2:1 para células livres (0,9±0,6 g L-1). A maior concentração final de trealose foi obtida nas co-fermentações de razão mássica 2:1 para células imobilizadas (12,1±0,1 g L-1) e a menor concentração final foi obtidas nas co-fermentações de razão mássica 2:1 para células livres (6,7±1,0 g L-1). O maior valor de produtividade e de rendimento do ácido propiônico foram obtidos nas co-fermentações de razão mássica 2:1 para células livres: 0,45 g L-1 h-1 e 0,412 g g-1, respectivamente / Abstract: Batch fermentations of sorbitol, sucrose, glycerol and glucose by free cells of Propionibacterium acidipropionici were conducted in bioreactors. Sorbitol fermentations yield the major final propionic acid concentration (39.5±5.2 g L-1) while glucose fermentations yield the minor result (23.9±2.1 g L-1). Only glycerol fermentations yield n-propanol (1.7±0.1 g L-1), furthermore, acetic acid was not generated in glycerol fermentations. In the other hand, sucrose fermentations yield great acetic acid final concentration (10.9±0.0 g L-1). The major propionic acid productivity was got in sorbitol fermentations (0.60 g L-1 h-1). Sorbitol and sucrose batch fermentations by free and immobilized cells of P. acidipropionici in montmorillonite K10 were carried out in three sequential cycles with cell reuse. The final propionic acid concentrations to sorbitol with free cells were 39.5±5.2; 35.8±1.4 e 34.4±1.9 g L-1 and with immobilized cells were 33.1±0.7; 37.2±0.6 e 36.6±0.4 g L-1, to the first, second and third sequential cycles, respectively. The major propionic acid productivity was got in the first cycle with free cells to sorbitol fermentations (0.60 g L-1 h-1). The major propionic acid yield was 0.613 g g-1 in the first cycle to free cells. The final propionic acid concentrations to sucrose fermentations with free cells were 33.4±0.3; 31.3±0.9 e 31.1±0.1 g L-1 and to immobilized cells were 26.9±0.6; 29.1±0.3 e 29.5±0.8 g L-1 to the first, second and third sequential cycles, respectively. The propionic acid productivity was major in the first cycle to free cells (0.48 g L-1 h-1). The major propionic acid yield was 0.409 g g-1 in the first cycle to free cells. Batch co-fermentations of glucose and glycerol were also conducted in two different mass ratios (1:1 and 2:1 glucose:glycerol) by P. acidipropionici free and immobilized in montmorillonite K10. The major propionic acid final concentration was got in glucose:glycerol 2:1 mass ratio co-fermentations by free cells (31.4±0.3 g L-1) while the minor final concentration was got with co-fermentation 1:1 mass ratio to immobilized cells (23.9±0.8 g L-1). Acetic acid was got only in co-fermentations 2:1 mass ratio to free (0.3±0.4 g L-1) and immobilized (1.1±0.2 g L-1) cells. The major propionic acid productivity was got in co-fermentations 2:1 mass ratio to free cells (0.45 g L-1 h-1). The major propionic acid yield was got in co-fermentations 2:1 mass ratio to free cells (0.412 g g-1). Only co-fermentations yield lactic acid and trehalose. The major lactic acid final concentration was got in co-fermentations 1:1 mass ratio to free cells (10.5±0.3 g L-1) and the minor final concentration was got in co-fermentations 2:1 mass ratio to free cells (0.9±0.6 g L-1). The major trehalose final concentration was got in co-fermentations 2:1 mass ratio to immobilized cells (12.1±0.1 g L-1) and the minor final concentration was got in co-fermentations 2:1 mass ratio to free cells (6.7±1.0 g L-1) / Doutorado / Engenharia de Processos / Doutora em Engenharia Quimica
5

Expressão da xilose isomerase de Propionibacterium acidipropionici em Saccharomyces cerevisiae visando a produção de etanol de segunda geração / Expression of a xylose isomerase from Propionibacterium acidipropionici in Saccharomyces cerevisiae aiming the production of lignocellulosic ethanol

Temer, Beatriz, 1988- 24 August 2018 (has links)
Orientador: Gonçalo Amarante Guimarães Pereira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-24T16:05:35Z (GMT). No. of bitstreams: 1 Temer_Beatriz_M.pdf: 9784134 bytes, checksum: 1bdd018cb932c19745ec5d68cf0f0755 (MD5) Previous issue date: 2014 / Resumo: Um dos principais desafios a serem superados para que a produção de etanol lignocelulósico seja viável é a obtenção de um micro-organismo capaz de fermentar pentoses e hexoses de maneira eficiente. A levedura Saccharomyces cerevisiae é o principal micro-organismo utilizado nas fermentações industriais, devido à sua alta eficiência no consumo de glicose e tolerância às altas concentrações de etanol. Entretanto, linhagens selvagens dessa levedura não são capazes de consumir pentoses naturalmente. Desta maneira, a expressão heteróloga de genes que possibilitem o consumo de pentoses em S. cerevisiae é uma abordagem interessante que vem sendo desenvolvida por diversos grupos de pesquisa. A xilose é o açúcar de cinco carbonos presente em maior porcentagem nos materiais lignocelulósicos e é consumida pelos organismos através de duas vias principais, a via da xilose isomerase (XI) e a via oxi-redutiva. A bactéria Propionibacterium acidipropionici, industrialmente interessante por produzir ácido propiônico, foi estudada neste trabalho com relação à sua capacidade de consumir xilose. A partir dos ensaios de fermentação realizados, foi possível comprovar que ela é capaz de consumir este açúcar na msma proporção que a glicose. A análise de dados genômicos de P. acidipropionici indicou que a via da XI é a utilizada para o consumo de xilose. Assim, o gene xylA, que codifica a XI de P. acidipropionici, foi expresso em uma linhagem industrial de S. cerevisiae. Após a realização de testes fermentativos foi possível constatar que a linhagem construída não apresentou consumo de xilose. Apesar da expressão do gene xylA ser comprovada, não foi possível detectar atividade enzimática da XI, resultados que fornecem indícios de que a proteína pode não estar sendo sintetizada ou, caso esteja sendo sintetizada, não é funcional. Mais de 36 XIs provenientes de organismos diferentes já foram expressas em S. cerevisiae, dentre essas apenas 12 foram funcionalmente expressas. As causas da não funcionalidade na maioria das tentativas de expressão heteróloga das XIs são desconhecidas. Entretanto, alguns trabalhos afirmam que esse fenômeno pode estar relacionado ao enovelamento incorreto da xilose isomerase em S. cerevisiae. Desta forma, a expressão de genes que codificam chaperonas específicas é uma estratégia promissora para a obtenção de uma xilose isomerase funcional / Abstract: One of the main challenges to be overcome to enable the production of lignocellulosic ethanol is the development of a microorganism capable of fermenting pentoses and hexoses efficiently. Currently the yeast Saccharomyces cerevisiae is the main microorganism used in industrial fermentations due to its high efficiency in glucose uptake and tolerance to high concentrations of ethanol; however, it is not able to consume pentoses naturally. Thus the heterologous expression of genes that allow the pentose consumption in S. cerevisiae is an interesting approach that has been developed by several research groups. Xylose is the main component in lignocellulosic biomass, and is consumed by organisms through two main pathways, the xylose isomerase (XI) pathway and the oxy-reductive pathway. The bacterium Propionibacterium acidipropionici is industrially interesting for its production of propionic acid, and was studied in this work with respect to its ability to consume xylose. Fermentation assays conducted proved that these bacteria can consume xylose in the same proportion as glucose. The analysis of genomic data from P. acidipropionici indicated that the XI pathway is used to ferment xylose, in this manner the xylA gene encoding this species XI was expressed in an industrial strain of S. cerevisiae. After conducting fermentation tests it was found that the strain developed was not able to consume xylose even though the XI gene was expressed in the yeast. Moreover, it was not possible to detect enzymatic activity of XI, indicating that the protein is probably not being synthesized or it is not functional. Over 36 XIs from different organisms have been expressed in S. cerevisiae, among these only 12 were functionally expressed. The causes of non-functionality in most attempts at heterologous expression of the XIs are unknown, however, some studies claim that this event may be related to the absence of chaperones, which assist the correct folding of proteins. Thus the expression of genes that encode specific chaperone is a promising strategy to obtain functional expression of these XIs / Mestrado / Genetica de Microorganismos / Mestra em Genética e Biologia Molecular

Page generated in 0.1049 seconds