• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação de critérios de seleção de modelos para o modelo de regressão beta

Teresa Freire Torres, Silvia January 2006 (has links)
Made available in DSpace on 2014-06-12T18:05:01Z (GMT). No. of bitstreams: 2 arquivo7226_1.pdf: 421955 bytes, checksum: 579902969dede05f55174abd1bd418d2 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / O modelo de regressão Beta possui grande aplicabilidade prática, em particular, na modelagem de taxas e proporções e, tal como nos demais modelos de regressão, também são requeridos métodos que determine qual o melhor modelo. A presente dissertação tem como objetivo principal implementar e avaliar o desempenho de diferentes critérios de seleção de modelos para o modelo de regressão Beta. Para tal, mediante diferentes estudos de simulações de Monte Carlo, analisamos alguns critérios selecionados levando em consideração suas propriedades assintóticas, os quais foram obtidos por meio da função de máxima verossimilhança. Os resultados das simulações revelaram que os desempenhos dos referidos critérios dependem da especificação do modelo e também do tamanho da amostra. Apresentamos ainda uma aplicação relacionada ao índice de Desenvolvimento Humano, que é uma variável adequada à modelagem em estudo, visto que seus valores variam no intervalo (0,1). Nesta aplicação, observamos que com a amostra de todos os municípios da região Nordeste os diferentes critérios utilizados selecionaram o mesmo modelo
2

Condições de regularidade para o modelo de regressão com parametrização geral / Regularity conditions for the regression model with general parameterization

Loose, Laís Helen 24 May 2019 (has links)
Este trabalho objetiva apresentar um estudo detalhado e sistemático de algumas condições de regularidade para inferências baseadas em máxima verossimilhança no modelo de regressão elíptico multivariado com parametrização geral proposto em Lemonte e Patriota (2011). O modelo em estudo tem vários modelos importantes como casos particulares, entre eles temos os modelos lineares e não lineares homocedásticos e heterocedásticos, modelos mistos, modelos heterocedásticos com erros nas variáveis e na equação, modelos multiníveis, entre outros. As condições de regularidade estudadas estão associadas à identificabilidade do modelo, à existência, à unicidade, à consistência e à normalidade assintótica dos estimadores de máxima verossimilhança (EMV) e à distribuição assintótica das estatísticas de testes. Para isso, são enunciadas as condições suficientes e formalizados os teoremas que garantem a existência, unicidade, consistência e normalidade assintótica dos EMV e a distribuição assintótica das estatísticas de teste usuais. Além disso, os resultados de cada teorema são comentados e as demonstrações são apresentadas com detalhes. Inicialmente, considerou-se o modelo sob a suposição de normalidade dos erros, para, na sequência, ser possível generalizar os resultados para o caso elíptico. A fim de exemplificar os resultados obtidos, foram verificadas, analiticamente, a validade de algumas condições e os resultados de alguns teoremas em casos particulares do modelo geral. Ademais, foi desenvolvido um estudo de simulação em que uma das condições é violada adotando o modelo heterocedástico com erros nas variáveis e na equação. Por meio de simulações de Monte Carlo foram avaliados os impactos sobre a consistência e normalidade assintótica dos EMV. / This work aims to present a detailed and systematic study of some regularity conditions for inferences based on maximum likelihood in the multivariate elliptic regression model with general parameterization proposed in Lemonte and Patriota (2011). The model under study has several important models as particular cases, among them we have the linear and non-linear homocedastic and heterocedastic models, mixed models, heterocedastic models with errors in the variables and in the equation, multilevel models, among others. The regularity conditions studied are associated with the identifiability of the model, existence, uniqueness, consistency and asymptotic normality of the maximum likelihood estimators (MLE) and the asymptotic distribution of some test statistics. Sufficient conditions are stated to guarantee the existence, unicity, consistency and asymptotic normality of the MLE and the asymptotic distribution of the usual test statistics. In addition, the results of each theorem are commented and the proof are presented in detail. Initially, the model was considered under the assumption of normality of the errors, and then the results were generalized for the elliptical case. In order to exemplify the attained results, some particular cases of the general model are analyzed analytically, the validity of some conditions and the results of some theorems are verified. In addition, a simulation study is developed with one of the conditions violated under the heterocedastic model with errors in the variables and in the equation. By means of Monte Carlo simulations, the impacts of this violation on the consistency and the asymptotic normality of the MLE are evaluated.

Page generated in 0.0703 seconds