• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of proteasome assembly in psoriatic skin and during keratinocyte differentiation in vitro - role of the proteasome maturation protein (POMP). / Caractérisation de l'assemblage du protéasome dans la peau psoriasique et au cours de la différenciation kératinocytaire in vitro - rôle de la protéine de maturation du protéasome (POMP).

Zieba, Barbara Agnieszka 19 December 2016 (has links)
Les protéasomes jouent un rôle majeur dans la protéolyse intracellulaire non-lysosomale et interviennent de ce fait dans la régulation de toutes les voies biologiques intracellulaires ainsi que dans la production des peptides antigéniques présentés au système immunitaire. La biosynthèse du protéasome 20S (le cœur protéolytique) est un processus complexe qui met en œuvre plusieurs protéines chaperonnes qui facilitent l'assemblage des sous-unités entre elles pour former d’abord des « hémi-protéasomes ». Ces hémi-protéasomes s'unissent ensuite deux à deux pour créer le protéasome 20S. La Protéine de Maturation du Protéasome (POMP) est une chaperonne « clé » de l’assemblage du protéasome: son hyperexpression induit une augmentation des activités protéolytiques du protéasome et une augmentation d’expression de plusieurs de ses sous-unités. Cette surexpression augmente également la longévité de la levure Saccharomyces cerevisiae, et augmente ses capacités de résistance au stress oxydant. L’activité protéolytique et l’expression des sous-unités des protéasomes sont augmentées dans l’épiderme psoriasique. Nos précédents résultats étaient en faveur d’une régulation post-transcriptionnelle de cette expression. Nous avons émis l’hypothèse que POMP était impliquée dans la biosynthèse accrue du protéasome dans la peau psoriasique. L'objectif de cette thèse a donc été d’étudier l’assemblage du protéasome et l’expression de POMP dans la peau psoriasique et au cours de la différenciation kératinocytaire. L'expression des protéasomes et de POMP a été évaluée au niveau protéique et au niveau des ARN messagers par Immuno-Histochimie, Western-blots et RT-PCR. L’assemblage du protéasome a été étudié par électrophorèse en conditions non dénaturantes, à partir de lysats de peaux psoriasiques ou de kératinocytes. L’expression de POMP a été modulée avec des ARN interférents dans des lignées HaCaT. Nous avons observé que les protéasomes 26S et 20S (et leur activité protéolytique) étaient augmentés dans la peau psoriasique lésée, de même que les régulateurs PA28β, PA28γ, PA200 et la sous-unité RPT4 du 19S. Ces résultats suggèrent que toutes les formes majeures des protéasomes sont augmentées dans la peau psoriasique. POMP est surexprimée dans l’épiderme psoriasique et associée à des précurseurs du protéasome. Au cours de la différenciation des cellules HaCaT, l’assemblage des protéasomes 20S et 26S et l’expression de POMP augmentent aux temps précoces (3 premiers jours) alors qu’aux temps plus tardifs les protéasomes 26S se désassemblent. Ce profil de désassemblage (marqué par la diminution du protéasome 26S, l’augmentation du protéasome 20S et l'accumulation du complexe régulateur 19S) est très similaire à celui observé au cours du stress oxydatif. L’inhibition forte de l'expression de POMP a un effet anti-proliferatif et pro-apoptotique via l’inhibition de l’assemblage du protéasome dans les lignées kératinocytaires. Une inhibition plus modérée diminue l’expression des marqueurs de différenciation kératine 10 et involucrine au cours de la différenciation calcium-induite des HaCaT. L’ensemble de ces résultats suggère que l’augmentation de l’assemblage, de l’activité et de la quantité des protéasomes dans l’épiderme psoriasique est liée (au moins en partie) à la surexpression de POMP et que la dérégulation de POMP pourrait altérer la prolifération et la différenciation kératinocytaires. Nos travaux sont donc en faveur de l’implication de POMP et de l’assemblage du protéasome dans la pathogénie du psoriasis. Le ciblage thérapeutique de POMP pourrait potentiellement avoir une action anti-proliférative et anti-inflammatoire (via notamment l’inhibition de NF-κB) et représente donc une perspective thérapeutique intéressante dans le psoriasis. / Proteasomes play a major role in non-lysosomal intracellular proteolysis and thereby are involved in the regulation of all intracellular biological pathways as well as in the production of antigenic peptides presented to the immune system. The biosynthesis of the 20S proteasome (proteolytic core) is a complex process that requires several chaperone proteins that facilitate the assembly of the subunits to form "hemi-proteasomes" that then combine in pairs to create the 20S proteasome. Proteasome Maturation Protein (POMP) is a key chaperone for proteasome assembly: its overexpression induces an increase in proteolytic activities of the proteasome and an increase in expression of several of its subunits. This overexpression also increases the longevity of the yeast Saccharomyces cerevisiae and increases its capabilities of resistance against oxidative stress. The proteolytic activity and expression of the proteasome subunits are increased in psoriatic epidermis. Our previous findings suggested a post-transcriptional regulation of this expression. We hypothesized that POMP was involved in the increased biosynthesis of proteasome in psoriatic skin. The objective of the thesis project was to study proteasome assembly and POMP expression in psoriatic skin and during keratinocyte differentiation. The expression of proteasomes and POMP has been evaluated at the protein and mRNA levels by immunohistochemistry, Western blots and RT-PCR. Proteasome assembly was studied by electrophoresis under non-denaturing conditions, from lysates of psoriatic skin or keratinocytes. POMP expression was modulated by RNA interference in HaCaT cell lines. We observed that proteasomes 26S and 20S (and their proteolytic activity) were increased in the lesional psoriatic skin, as well as the proteasome regulators PA28β, PA28γ, PA200 and the 19S subunit RPT4. These results suggest that all the major proteasomal forms are increased in psoriatic skin. POMP is overexpressed in psoriatic epidermis and associated with precursors of the proteasome. During the differentiation of HaCaT cells, the assembly of 20S and 26S proteasomes and POMP expression increases at early time (first 3 days), while in later times 26S proteasomes disassemble. This disassembly profile (marked by the decrease of the 26S proteasome, the increase of the 20S proteasome complex and the accumulation of its 19S regulator) is very similar to that observed during oxidative stress. The strong inhibition of POMP expression has an anti-proliferative and pro-apoptotic effect via inhibition of proteasome assembly in the HaCaT keratinocyte cell line. However a moderate inhibition decreases the expression of differentiation markers keratin 10 and involucrin during calcium-induced differentiation of these cells. All these results suggest that the increase of the assembly, the activity and amount of proteasomes in psoriatic epidermis are linked (at least partially) to the overexpression of POMP and that deregulation of POMP could alter keratinocyte proliferation and differentiation. Our work is therefore in favor of the involvement of POMP and assembly of the proteasome in the pathogenesis of psoriasis. Therapeutic targeting of POMP could potentially have anti-proliferative and anti-inflammatory effects (particularly through the inhibition of NF-κB) and therefore represents an interesting therapeutic perspective in psoriasis.
2

Protéines infectieuses chez la levure Saccharomyces cerevisiae : un mal pour un bien ? Modulation de la propagation de prions de levure par le protéasome et les chaperons moléculaires durant la transition duauxique et la phase stationnaire / Infectious Proteins in the Yeast Saccharomyces Cerevisiae : a Blessing in Disguise ? Modulation of Yeast Prion Propagation by the Proteasome and Molecular Chaperons During Diauxic Shift and Stationary Phase

Wang, Kai 27 September 2016 (has links)
Les prions sont des protéines qui suite à des changements de conformation acquièrent un caractère infectieux. Ils sont à l’origine de traits dominants, héritables de façon non-Mendélienne, chez les mammifères, les champignons filamenteux et les levures. Le mauvais repliement et l’agrégation des protéines sont à l’origine de plus de 40 maladies, parmi lesquelles on retrouve des maladies neurodégénératives telles que les maladies d’Alzheimer, de Parkinson et de Huntington. Il a été montré que les formes agrégées des protéines supposées responsables de ces maladies (i.e. peptide amyloïde-β, tau, α-synucléine, huntingtine) se propagent de cellule en cellule à la manière des prions. La levure Saccharomyces cerevisiae possède plusieurs prions qui sont autant d’excellents modèles biologiques pour la compréhension des mécanismes de formation et de propagation des prions.[PSI+] et [URE3], issus respectivement de la conversion sous forme prion du terminateur de la traduction Sup35p et d’un régulateur du métabolisme azoté Ure2p, sont à ce jour les deux prions les mieux documentés chez la levure. Les chaperons moléculaires et leurs co-chaperons modulent la formation, la réplication et la propagation des prions chez la levure. Cependant, l’élimination ou la dégradation de ces prions sont encore mal connus. Notre laboratoire a montré que le protéasome 26S est capable de dégrader les formes soluble et fibrillaire de Sup35p. Dans la première partie de ma thèse, nous avons étudié le rôle du protéasome 26S dans la dégradation des formes soluble et fibrillaire d’Ure2p. Nous avons montré que, comme pour Sup35p, le protéasome 26S dégrade Ure2p soluble en générant des peptides amyloïdes issus du domaine prion N-terminal ainsi qu’un fragment C-terminal résistant à la protéolyse. Nous avons montré que le domaine prion déstructuré est nécessaire pour la reconnaissance et la dégradation par le protéasome. Contrairement à ce qui avait été observé pour Sup35p, Ure2p sous sa forme fibrillaire est totalement résistante à la dégradation protéasomale. Nous suggérons que la variabilité structurale aux seins des particules de prions dans un contexte cellulaire dicte leurs interactions avec les machineries protéolytiques, et plus particulièrement avec le protéasome.Les prions de levure ont principalement été étudiés dans un contexte de cellules en division active. Cependant, dans la nature, la plupart des cellules sont retrouvées dans un état quiescent post-mitotique. Nous n’avons que très peu d’informations sur le devenir des particules de prions lorsque les cellules entrent dans un état quiescent. De même les conséquences physiologiques des prions sur la survie à long terme des levures sont très peu documentées. Dans la seconde partie de ma thèse, nous avons utilisé le prion [PSI+] comme modèle pour répondre à ces questions. Différentes conformations des agrégats de Sup35p conduisent à des souches phénotypiquement distinctes du prion [PSI+]. Nous avons constaté que les agrégats de Sup35p subissent des changements ultra-structuraux et fonctionnels au cours des différentes phases de croissance cellulaire. Ainsi, nous avons observés des changements importants dans la distribution de taille et dans l’infectiosité des polymères de Sup35p résistants au SDS formant les briques élémentaires du prion [PSI+]. Ces changements interviennent sans affecter les informations structurales spécifiques à chaque souche de prion [PSI+]. De façon remarquable, bien que [PSI+] n’affecte pas le taux de croissance des levures, ce prion semble prolonger significativement la durée de vie des levures. Cet effet bénéfique semble pouvoir se fixer de façon efficace et permanente dans les cellules et persister même après élimination de [PSI+]. La fixation génétique de caractéristiques épigénétiques induites par [PSI+] ont été déjà observées et l’ensemble de ces résultats suggère que [PSI+] (et éventuellement d’autres prions) peut jouer le rôle de capaciteurs évolutifs transitoires. / “Proteinaceous infectious particles”, or prions, are self-perpetuating alternate conformations of proteins that are responsible for heritable non-Mendelian traits in mammals, filamentous fungi and yeast. On a more general note, protein misfolding and aggregation is at the origin of over forty protein folding disorders including devastating neurodegenerative diseases such as Alzheimer’s, Parkinson’s or Huntington’s diseases. The aggregated proteins responsible for these diseases (i.e. amyloid-β peptide/tau, α-synuclein and huntingtin) were shown to propagate from cell to cell in a prion-like manner. The yeast Saccharomyces cerevisiae hosts many prion or prion-like proteins, unrelated in sequence and function, which proved to be excellent models for understanding the dynamics of prion aggregation and distribution upon cell division.Sup35p and Ure2p which cause the [PSI+] and [URE3] heritable traits, respectively, stand out as the most studied and best characterized yeast prions to date. A plethora of cellular factors, mostly belonging to various molecular chaperone families, were shown to affect yeast prion formation and propagation. Clearance of protein aggregates and prion particles is however poorly understood and documented. Our laboratory showed that the 26S proteasome degrades both the soluble and prion-associated fibrillar forms of Sup35p. In the first part of my thesis, we investigated the role of the 26S proteasome in the degradation of the soluble and fibrillar forms of Ure2p. We found that, as with Sup35p, the 26S proteasome is able to degrade the soluble native Ure2p, generating an array of amyloidogenic N-terminal peptides and a C-terminal fragment which is resistant to proteolysis. The N-terminal prion domain was shown to act as a degron required for proteasomal engagement and degradation. In contrast to Sup35p, fibrillar Ure2p resisted proteasomal degradation. We expect the structural variability within prion assemblies in a cellular context to dictate their interaction with proteolytic machineries in general and the proteasome in particular.The biology of yeast prions has been mostly explored in the context of logarithmically dividing cells. In nature however, most cells are generally in a post-mitotic non-dividing quiescent state. Yet little is known about the fate and properties of prion particles upon yeast cells entry into the stationary or quiescent states and the physiological consequences of harboring these prions throughout the lifespan of yeast cells. In the second part of my thesis, we addressed this issue using the [PSI+] prion as a model. Structurally different conformers of Sup35p aggregates can lead to distinct [PSI+] strains with different prion phenotypes. We found that Sup35p prion particles undergo growth phase-dependent ultrastructural and functional changes. Indeed, the size distributions of SDS-resistant core-prion particles significantly change during growth without affecting the structural information specific to each prion strain. The infectious properties of Sup35p prion particles undergo dramatic growth phase-dependent changes. Importantly, we found that while [PSI+] has little to no effects on the growth rates of yeasts, it robustly prolongs their chronological lifespan. Furthermore, this beneficial effect can then be permanently and efficiently fixed in the cells even when [PSI+] is subsequently lost. Similar genetic fixation of [PSI+]-induced epigenetic characteristics were previously observed and suggested [PSI+] (and possibly other prions) can act as transient evolutionary capacitators.
3

Régulation protéasome-dépendante de l'activité transcriptionnelle des récepteurs des estrogènes

Charbonneau, Catherine January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.0455 seconds