Spelling suggestions: "subject:"1protein–protein interactions"" "subject:"2protein–protein interactions""
361 |
Hetero-Protein Coacervation and Complex Equilibria Between β-lactoglobulin and LactoferrinFlanagan, Sean E 01 January 2014 (has links) (PDF)
Coacervation between the milk proteins β-lactoglobulin (BLG) and Lactoferrin (LF) was studied as a model system for hetero-protein coacervation (HPC). Equilibria among BLG/LF complexes and the corresponding speciation were found to control coacervation, which can be quantitatively monitored by turbidimetry. Several methods were used to assess complexation as a function of LF : BLG (mol/mol) mixing ratio (r). Proton release, calculated from a shift in pH when LF is added to BLG, was used to identify regions of complexation. Dynamic light scattering (DLS) was used to determine regions of complexation by relating complex size to stoichiometry. Isothermal titration calorimetry (ITC) was used to measure enthalpies of binding upon addition of LF to BLG. These results are used to show that coacervation is related to speciation, with the LF(BLG2)2 complex as the coacervating species.
|
362 |
Computational Prediction of Protein-Protein Interactions on the Proteomic Scale Using Bayesian Ensemble of Multiple Feature DatabasesKumar, Vivek 01 December 2011 (has links)
No description available.
|
363 |
Development of a Fluorescent Drug Screening Platform for Inhibitors of Mycobacterium Tuberculosis Protein-Protein InteractionsVersfeld, Zina 01 January 2015 (has links)
Tuberculosis (TB) is a respiratory disease caused by Mycobacterium tuberculosis (Mtb) that kills around 1.3 million people annually. Multi-drug resistant TB (MDR-TB) strains are increasingly encountered, in part resulting from shortcomings of current TB drug regimens that last between six to nine months. Patients may stop taking the antibiotics during their allotted regimen, leading to drug resistant TB strains. Novel drug screening platforms are therefore necessary to find drugs effective against MDR-TB. In order to discover compounds that target under-exploited pathways that may be essential only in vivo, the proposed screening platform will use a novel approach to drug discovery by blocking essential protein-protein interactions (PPI). In Mtb, PPI can be monitored by mycobacterial protein fragment complementation (M-PFC). This project will re-engineer the M-PFC assay to include the red fluorescent mCherry reporter for increased efficiency and sensitivity in high-throughput screening applications. To optimize the mCherry assay, we have developed fluorescent M-PFC reporter strains to monitor distinct PPI required for Mtb virulence: homodimerization of the dormancy regulator DosR. A drug screen will then identify novel compounds that inhibit this essential PPI. The screen will involve positional-scanning combinatorial synthetic libraries, which are made up of chemical compounds with varying side chains. This work will develop novel tools for TB drug discovery that could identify new treatments for the emerging world threat of MDR-TB.
|
364 |
Resolving Membrane Receptor Multimerization in Live Cells using Time Resolved Fluorescence MethodsKlufas, Megan J. January 2017 (has links)
No description available.
|
365 |
Binding Specificity of SH2 Domains Revealed by a Combinatorial Peptide LibraryKunys, Andrew Richard 27 September 2013 (has links)
No description available.
|
366 |
Mechanism of Action of Insecticidal Crystal Toxins from <i>Bacillus thuringiensis:</i> Biophysical and Biochemical Analyses of the Insertion of Cry1A Toxins into Insect Midgut MembranesNair, Manoj Sadasivan 11 September 2008 (has links)
No description available.
|
367 |
Engineering Proteins with GFP: Study of Protein-Protein Interactions In vivo, Protein Expression and SolubilitySarkar, Mohosin M. January 2009 (has links)
No description available.
|
368 |
Molecular Modeling of Solute/Co-Solvent/Water Preferential Interactions: Toward Understanding the Role of Hydration and Co-solvent in Weak Protein-Protein InteractionsMohana Sundaram, Hamsa Priya 21 March 2011 (has links)
No description available.
|
369 |
Systematic interaction mapping reveals novel modifiers of neurodegenerative disease processesRuss, Jenny 19 November 2012 (has links)
Neurodegenerative Erkrankungen (NDs) wie Alzheimer (AD), Parkinson (PD), und amyotrophe lateral Sklerose (ALS) sind Hirnerkrankungen, die durch unlösliche Proteinaggregate in Neuronen oder im Extrazellularraum charakterisiert sind. In dieser Arbeit habe ich für verschiede bekannte und vorhergesagte neurodegenerative Krankheitsproteine (NDPs) Proteininteraktionsnetzwerke erstellt, um mögliche gemeinsame Krankheitsmechanismen genauer zu studieren. Mit Hilfe eines automatisierten Hefe-Zwei-Hybrid-Systems (Y2H) konnte ich 18.663 Protein-Protein-Interaktionen (PPIs) für 449 wildtyp und 22 mutierte Proteine identifizieren. Eine genaue funktionelle Analyse der Interaktionspartner von korrespondierenden wildtyp und mutierten Proteinen ergab deutliche Unterschiede zum einen im Fall von allen untersuchten Proteinen und insbesondere im Fall vom ALS Krankheitsprotein TDP-43. Die identifizierten PPIs wurden außerdem verwendet um krankheitsspezifische Netzwerke zu erstellen und um Proteine zu identifizieren, die mit mehreren NDPs verbunden sind. Ich habe auf diese Weise vier Proteine (APP, IQSEC1, ZNF179 und ZMAT2) gefunden, die mit bekannten NDPs with Huntingtin, TDP-43, Parkin und Ataxin-1 interagieren und so fünf verschiedene NDs miteinander verbinden. Die Reduktion der mRNA Expression von IQSEC1, ZNF179 oder ZMAT2 mit Hilfe von siRNA führte zu einer Verstärkung von pathogenen Mechanismen wie der Aggregation von mutiertem Huntingtin und TDP-43 sowie der Hyperphosphorylierung des Proteins Tau. Außerdem habe ich 22 Proteine entdeckt, die die Aggregation von TDP-43 deutlich verändern und außerdem Mitglieder in sieben vorhergesagten Proteinkomplexen sind. Die Proteinkomplexe habe ich durch Kombination von Interaktionsdaten und Daten eines siRNA Screenings vorhergesagt. Zusätzlich habe ich herausgefunden, dass die Proteine eines vorhergesagten Komplexes, nämlich HDAC1, pRB, HP1, BRG1 und c-MYC, die Aggregation von TDP-43 durch Veränderung von dessen Genexpression beeinflussen. / Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD) or amyotrophic lateral sclerosis (ALS) are progressive brain disorders characterized by the accumulation of insoluble protein aggregates in neuronal cells or the extracellular space of patient brains. To elucidate potential common pathological mechanisms in different NDs, I created comprehensive interaction networks for various known and predicted neurodegenerative disease proteins (NDPs). I identified 18,663 protein-protein interactions (PPIs) for 449 bioinformatically selected wild-type target proteins and 22 mutant variants of 11 known NDPs by using an automated yeast two-hybrid (Y2H) system. The functional analysis of the interaction partners of corresponding wild-type and mutant NDPs revealed strong differences in the case of all 11 NDPs and especially for the ALS protein TDP-43. The identified PPIs were used to generate networks for individual NDs such as AD or PD and to identify proteins that are connected to multiple NDPs. For example, I found that five neurodegenerative diseases are connected by four proteins (APP, ZMAT2, ZNF179 and IQSEC1) that link known NDPs such as huntingtin, TDP-43, parkin, ataxin-1 and SOD1. Analysis of publicly available gene expression data suggested that the mRNA expression of the four proteins is abnormally altered in brains of ND patients. Moreover, the knock-down of IQSEC1, ZNF179 or ZMAT2 aggravates pathogenic disease mechanisms such as aggregation of mutant huntingtin or TDP-43 as well as hyperphosphorylation of tau. Additionally, I identified 22 modifiers of TDP-43 aggregation, which are members in 7 protein complexes. These complexes were predicted based on combined data from PPI as well as siRNA screenings. Finally, I found that the proteins HDAC1, pRB, HP1, BRG1 and c-MYC, which form one of the predicted complexes, influence TDP-43 aggregation by altering its mRNA expression.
|
370 |
Network-based inference of protein function and disease-gene associationJaeger, Samira 23 April 2012 (has links)
Proteininteraktionen sind entscheidend für zelluläre Funktion. Interaktionen reflektieren direkte funktionale Beziehungen zwischen Proteinen. Veränderungen in spezifischen Interaktionsmustern tragen zur Entstehung von Krankheiten bei. In dieser Arbeit werden funktionale und pathologische Aspekte von Proteininteraktionen analysiert, um Funktionen für bisher nicht charakterisierte Proteine vorherzusagen und Proteine mit Krankheitsphänotypen zu assoziieren. Verschiedene Methoden wurden in den letzten Jahren entwickelt, die die funktionalen Eigenschaften von Proteinen untersuchen. Dennoch bleibt ein wesentlicher Teil der Proteine, insbesondere menschliche, uncharakterisiert. Wir haben eine Methode zur Vorhersage von Proteinfunktionen entwickelt, die auf Proteininteraktionsnetzwerken verschiedener Spezies beruht. Dieser Ansatz analysiert funktionale Module, die über evolutionär konservierte Prozesse definiert werden. In diesen Modulen werden Proteinfunktionen gemeinsam über Orthologiebeziehungen und Interaktionspartner vorhergesagt. Die Integration verschiedener funktionaler Ähnlichkeiten ermöglicht die Vorhersage neuer Proteinfunktionen mit hoher Genauigkeit und Abdeckung. Die Aufklärung von Krankheitsmechanismen ist wichtig, um ihre Entstehung zu verstehen und diagnostische und therapeutische Ansätze zu entwickeln. Wir stellen einen Ansatz für die Identifizierung krankheitsrelevanter Genprodukte vor, der auf der Kombination von Proteininteraktionen, Proteinfunktionen und Netzwerkzentralitätsanalyse basiert. Gegeben einer Krankheit, werden krankheitsspezifische Netzwerke durch die Integration von direkt und indirekt interagierender Genprodukte und funktionalen Informationen generiert. Proteine in diesen Netzwerken werden anhand ihrer Zentralität sortiert. Das Einbeziehen indirekter Interaktionen verbessert die Identifizierung von Krankheitsgenen deutlich. Die Verwendung von vorhergesagten Proteinfunktionen verbessert das Ranking von krankheitsrelevanten Proteinen. / Protein interactions are essential to many aspects of cellular function. On the one hand, they reflect direct functional relationships. On the other hand, alterations in protein interactions perturb natural cellular processes and contribute to diseases. In this thesis we analyze both the functional and the pathological aspect of protein interactions to infer novel protein function for uncharacterized proteins and to associate yet uncharacterized proteins with disease phenotypes, respectively. Different experimental and computational approaches have been developed in the past to investigate the basic characteristics of proteins systematically. Yet, a substantial fraction of proteins remains uncharacterized, particularly in human. We present a novel approach to predict protein function from protein interaction networks of multiple species. The key to our method is to study proteins within modules defined by evolutionary conserved processes, combining comparative cross-species genomics with functional linkage in interaction networks. We show that integrating different evidence of functional similarity allows to infer novel functions with high precision and a very good coverage. Elucidating the pathological mechanisms is important for understanding the onset of diseases and for developing diagnostic and therapeutic approaches. We introduce a network-based framework for identifying disease-related gene products by combining protein interaction data and protein function with network centrality analysis. Given a disease, we compile a disease-specific network by integrating directly and indirectly linked gene products using protein interaction and functional information. Proteins in this network are ranked based on their network centrality. We demonstrate that using indirect interactions significantly improves disease gene identification. Predicted functions, in turn, enhance the ranking of disease-relevant proteins.
|
Page generated in 0.1713 seconds