Spelling suggestions: "subject:"1protein - biochemistry"" "subject:"1protein - thiochemistry""
11 |
Studies on Ligand Binding, Unfolding And Cloning Of The Winged Bean (Psophocarpus tetragonolobus) Acidic AgglutininSrinivas, V R 05 1900 (has links)
No description available.
|
12 |
Characterization of Synaptotagmin Function In Calcium Dependent Neuronal Exocytosis / Charakterisierung der Funktion von Synaptotagmin bei der Calcium-abhängigen neuronalen ExozytoseRadhakrishnan, Anand 04 May 2007 (has links)
No description available.
|
13 |
Etudes structurales du complexe de réplication des Rhabdoviridae et des Paramyxoviridae. Les interactions entre la phosphoprotéine et la nucléoprotéine / Structural studies of the replication complex of Rhabdoviridae and Paramyxoviridae. Interactions between the phosphoprotein and the nucleoproteinYabukarski, Filip 27 September 2013 (has links)
Le virus de la stomatite vésiculaire (VSV) et le virus Nipah (NiV) appartiennent respectivement aux familles des Rhabdoviridae et des Paramyxoviridae. VSV est un modèle du virus de la rage tandis que NiV est un virus émergeant, appartenant à la sous-famille des Paramyxovirinae, pour lequel les données moléculaires et structurales sont limitées. Ces sont des virus enveloppés dont le génome code pour cinq à neuf protéines. Le complexe de réplication de ces virus est constitué de trois protéines : la phosphoprotéine (P), la nucléoprotéine (N) et la polymérase virale (L). La N encapside le génome viral et l'ensemble N-ARN sert de matrice pour la transcription et la réplication. La P joue deux rôles : elle sert de cofacteur pour la polymérase et forme le complexe N0-P qui maintient la N sous une forme soluble, compétente pour l'encapsidation des génomes néo-synthétisés. Un premier objectif de mon travail de thèse consistait à étudier la structure et la dynamique des protéines P de VSV et de NiV. Ce sont des protéines modulaires qui contiennent des domaines structurés, séparés par des régions flexibles. A mon arrivée au laboratoire un travail important avait été déjà réalisé sur la P de VSV et j'ai participé à l'achèvement de cette étude. Je me suis ensuite intéressé à la protéine P de NiV. J'ai cristallisé et résolu par diffraction des rayons X les structures du domaine C-terminal et du domaine central (codes PDB : 4F9X et 4GJW). La combinaison de ces modèles cristallographiques avec des données de SAXS sur la P entière et des données de résonance magnétique nucléaire (RMN, collaboration IBS) va permettre d'obtenir un modèle atomique de la P entière sous la forme d'un ensemble de conformères. Un deuxième objectif était d'étudier les complexes N0-P. J'ai activement participé au développement de la méthode de reconstitution et à la caractérisation structurale du complexe N0-P de VSV, entre un mutant de la N (NΔ21) et un peptide N-terminal de la P (code PDB : 3PMK). J'ai ensuite reconstitué, cristallisé et résolu la structure de complexe N0-P de NiV entre la N (tronquée de son domaine C-terminal) et la partie N-terminale de la P. Ces structures montrent par quel mécanismes moléculaires la P maintien la N sous forme monomérique, en empêchant sa polymérisation et son interaction avec l'ARN. Les résultats présentés ici ont permis de générer de nouvelles hypothèses pour expliquer les mécanismes d'encapsidation et d'initiation de la synthèse d'ARN chez ces virus. Le complexe N0-P étant essentiel pour la réplication du virus, l'information structurale obtenue au cours de ce travail devrait permettre d'envisager l'utilisation de ce complexe comme cible pour le développement de composés antiviraux. / Abstract Vesicular stomatitis virus (VSV) and Nipah virus (NiV) belong to the Rhabdoviridae and Paramyxoviridae families, respectively. VSV serves as model system for rabies virus while NiV is an emerging pathogen of the Paramyxovirinae subfamily, for which molecular and structural data are scarce. Both viruses are enveloped and their genomes encode five to nine proteins. Three proteins form their replication complex: the phosphoprotein (P), the nucleoprotein (N) and the viral polymerase (L). N encapsidates the viral genome and this N-RNA complex serves as template for transcription and replication. P has two functions: it serves as a polymerase cofactor and forms an N0-P complex, which keeps the N protein in a soluble and monomeric state, competent for the encapsidation of the newly synthesized genomes. The first goal during the PhD work was to study the structure and dynamics of the VSV and NiV P proteins. These proteins are modular, containing structured domains separated by flexible regions. Before my arrival, a large amount of work was already done on the VSV P protein in the lab and I was involved in the final stages of this work. Then this I studied the NiV P protein, crystallizing and solving the structures of its Central and C-terminal domains by X-ray crystallography (PDB codes: 4F9X and 4GJW). Combining these structures with small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR, collaboration with IBS group) data obtained for the entire protein will allow the construction of an atomic model of the phosphoprotein in the form of a conformational ensemble. The second goal was to study the N0-P complex. I actively participated in the development of the method which permitted the reconstruction of the VSV N0-P complex, using a truncation mutant of the N protein (NΔ21) and an N-terminal peptide from P, and to its structural determination (PDB code: 3PMK). Then I reconstructed, crystallized and solved the structure of the NiV N0-P complex using a C-terminally truncated N protein and the N-terminal region of the P protein. Both structures yielded insights into the molecular mechanisms used by the phosphoproteins in order to maintain the corresponding nucleoproteins in their monomeric state, thus inhibiting their polymerization and interaction with RNA. The results presented here also offered new hypothesis about mechanisms of encapsidation and of RNA synthesis initiation. Given that the N0-P complex is an essential component of the replication complex, the structural information gained from this work allow us to consider this complex as a potential antiviral target.
|
14 |
Investigating cell lineage specific biosynthesis of tenascin-C during inflammationGiblin, Sean January 2018 (has links)
The extracellular matrix (ECM) is a complex network of molecules secreted by cells, which is essential for providing structural support and facilitating cell processes including adhesion, migration and survival. Tenascin-C is an immunomodulatory ECM protein that exhibits limited expression in healthy tissues, but is transiently elevated at sites of tissue injury, and is persistently expressed in chronic inflammatory diseases and tumours. Alternative splicing of 9 of tenascin-C's fibronectin type III-like domains (FnIII- A1, A2, A3, A4, B, AD2, AD1, C and D) generates enormous diversity in form; yielding 511 possible isoforms. Post-transcriptional modification of tenascin-C has been studied in cancer and during development where disease and tissue specific isoforms exhibit distinct adhesive, migratory and proliferative effects. However, little is known of how tenascin-C is expressed or alternatively spliced during inflammation. This study characterises inflammation and disease specific tenascin-C isoforms made by immune cells and fibroblasts, and investigates their functional relevance. Biosynthesis and alternative splicing of tenascin-C was examined using standard curve qPCR, ELISA, Western blot and confocal immunocytochemistry in resting and activated primary human immune cells, dermal fibroblasts, and in synovial fibroblasts isolated from healthy controls and from osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Based on these data, three recombinant proteins comprising FnIII domains AD2-AD1, B-C-D and B-AD2-AD1-C-D were cloned, expressed and purified, and their impact on cell behaviour including adhesion, morphology and migration was assessed. Basal tenascin-C expression was lower in myeloid and lymphoid cells than fibroblasts, and was induced in all following inflammatory stimulation. Tenascin-C expression was elevated in disease with RA and OA synovial fibroblasts containing higher levels than healthy controls. Alternative splicing following cell activation was cell-type specific: all FnIII except AD2 and AD1 were upregulated in dendritic cells and macrophages, in T-cells all FnIII remained unchanged with FnIII A1 absent; and no change in splicing was observed in activated dermal fibroblasts. Normal and OA synovial fibroblasts exhibited similar tenascin-C splicing patterns, but FnIII B and D were specifically elevated in RA. Functional analysis revealed differences in the adhesion, morphology and migration of myeloid cells and dermal fibroblasts cultured on FnIII AD2-AD1, B-C-D, B-AD2-AD1-C-D and full length tenascin-C substrates; FnIII B-C-D promoted MDDC migration while B-AD2-AD1-C-D promoted fibroblast adhesion, compared to full length tenascin-C. For the first time, this study reveals differences in tenascin-C biosynthesis and alternative splicing by immune cells and fibroblasts following activation with inflammatory stimuli; and starts to reveal how alternative splicing of tenascin-C may influence the behaviours of both stromal and immune cells types during inflammation and in inflammatory diseases.
|
15 |
Development of a wheat germ cell-free expression system for the production, the purification and the structural and functional characterization of eukaryotic membrane proteins : application to the preparation of hepatitis C viral proteins / Développement d'un système d'expression acellulaire à base d'extrait de germe de blé pour la production, la purification et la caractérisation structurale et fonctionnelle de protéines membranaires eucaryotes : application à la préparation des protéines du virus de l'hépatite CFogeron, Marie-Laure 30 June 2015 (has links)
Alors que 30% du génome code pour des protéines membranaires, moins de 3% des structures protéiques dans la Protein Data Bank correspondent à ces protéines. En raison de leur nature hydrophobe, les protéines membranaires sont en effet très difficiles à produire dans des systèmes d'expression classique en cellules, notamment en bactéries. L'étude structurale des protéines membranaires du virus de l'hépatite C (VHC) sous forme entière et native a donc été pendant longtemps entravée. Le VHC est un virus à ARN positif dont le complexe de réplication est basé sur un réarrangement spécifique des membranes induit par l'action concertée de plusieurs protéines non structurales du virus dont NS2, NS4B et NS5A. La structure tridimensionnelle et le rôle de ces protéines dans la réplication virale sont encore mal connus. Pour surmonter les limitations qui empêchent leurs études structurales et fonctionnelles, un système d'expression acellulaire à base d'extrait de germe de blé a été développé avec succès, permettant la production des protéines NS2, NS4B et NS5A entières directement sous une forme solubilisée en présence de détergent. Ces protéines membranaires sont produites et purifiées par chromatographie d'affinité dans des quantités de l'ordre du milligramme. Des analyses par filtration sur gel indiquent que les échantillons obtenus sont homogènes. De plus, des analyses structurales par dichroïsme circulaire montrent que les protéines produites dans ce système sont bien repliées. Leur reconstitution dans des lipides est en cours d'optimisation. Le but ultime est en effet de déterminer leur structure par RMN du solide dans un environnement lipidique mimant l'environnement natif / While 30% of the genome encodes for membrane proteins, less than 3% of protein structures in the Protein Data Bank correspond to such proteins. Due to their hydrophobic nature, membrane proteins are indeed notoriously difficult to express in classical cell-based protein expression systems. The structural study of the membrane proteins of hepatitis C virus (HCV) in their full-length and native form has therefore been for long time hampered. HCV is a positive-strand RNA virus building its replication complex on a specific membrane rearrangement (membranous web), which serves as a scaffold for the HCV replicase, and is induced by the concerted action of several HCV non-structural proteins including NS2, NS4B and NSSA. The knowledge of the three- dimensional structure of these proteins and their role in virus replication is still limited. To overcome the limitations that prevent the structural and functional studies of these proteins, a wheat germ cell-free protein expression system has been developed. A production protocol was designed which allows us to directly obtain membrane proteins in a soluble form by adding detergent during the in vitro protein synthesis. A large number of mainly viral proteins were successfully expressed, and full protocols were developed for the full-length NS2, NS4B and NSSA proteins. These membrane proteins were produced and purified by affinity chromatography using a Strep-tag II in the milligram range. These protein samples are homogenous, as shown by gel filtration analysis. Moreover, structural analyses by circular dichroism showed that the proteins produced in the wheat germ cell-free system are well folded. Reconstitution of these proteins in lipids is currently under optimization. The ultimate goal is to determine their structure by solid-state NMR in a native-like membrane lipids environment
|
Page generated in 0.0568 seconds