• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 9
  • 9
  • 9
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural biology of Cystic Fibrosis Transmembrane Conductance Regulator, an ATP-binding cassette protein of medical importance

Alzahrani, Ateeq Ahmed Hassan January 2012 (has links)
The cystic fibrosis transmembrane conductance regulator (CFTR) is a transmembrane protein that functions as an ion channel. Mutations in this protein cause Cystic Fibrosis. For this reason, it is important to study the structure and function of CFTR. In this study, constructs of CFTR (C-terminii), a CFTR-interacting protein and full-length CFTR were cloned, expressed and purified for structural and functional studies. The purified C-terminal polypeptides of CFTR were soluble and shown to interact with NHERF1 PDZ 1 (a CFTR-interacting protein). The CFTR C-terminus and NHERF1 PDZ 1 domain were co-expressed and co-purified. The purified complex showed a strong interaction that might induces a conformational change. Site-directed mutation of the C-terminus of CFTR was performed in order to examine the effect of removing a potentially flexible amino acid (Arginine) on protein crystallization. Pull-down assay experiments with full-length CFTR demonstrated an interaction between CFTR (in DDM detergent) and NHERF1 PDZ 1(+). No interaction was observed for CFTR in LPG (a relatively denaturing detergent) and NHERF1, implying that the interaction between the PDZ motive of CFTR and NHERF1 requires a stable folded structure for both proteins. In addition, full-length CFTR in DDM has been studied by electron microscopy and Single Particle Analysis in the presence of NHERF1 PDZ 1(+). A 3D structure was generated for the CFTR-NHERF1 PDZ 1(+) complex at a resolution of ~ 18 A. This 3D structure showed a new open conformation of CFTR (V shape). In comparable studies with CFTR alone, a 3D structure was generated at a resolution of 27 A and this structure showed a closed state as previously reported. This new data suggest a possible role for NHERF1 in terms of CFTR channel gating or activation.
2

Development of a quantitative assay to distinguish glaucoma-causing and benign olfactomedin variants

Burns, Joyce Nicole 18 November 2010 (has links)
Myocilin, expressed in the trabecular meshwork of the eye, has been linked to inherited primary open-angle glaucoma (POAG). The biological function of myocilin is unknown, but mutant myocilin exhibits a gain-of-function mechanism, aggregating within the endoplasmic reticulum of human trabecular meshwork cells, causing cell stress and eventually apoptosis. After apoptosis occurs, the trabecular meshwork is compromised, leading to an increase in intraocular pressure, a symptom of glaucoma. In this thesis, I have expressed and purified the wild-type olfactomedin (OLF) domain and 24 reported disease-causing variants. I developed a facile thermal stability assay using differential scanning fluorimetry, which follows the unfolding of a protein through the fluorescence of a dye sensitive to hydrophobic regions of a protein. Also in this thesis I have determined melting temperatures for the wild-type and for each of the disease-causing mutants. I have tested the stability of the mutants in the presence of seven osmolytes, with sarcosine and trimethylamine-N-oxide restoring the melting temperature closest to wild-type. Additionally, I expressed and purified three reported single nucleotide polymorphisms (SNPs) (E352Q, E396D, K398R), which are considered benign variants. Variants were also compared by circular dichroism, revealing high b-sheet content and wild-type structure. When compared to previous studies, there is a positive correlation between the melting temperature, and previously reported qualitative assays, which measure the mutant myocilin solubility in detergent, secretion from mammalian cells, and aggregation propensity. Taken together, these data give insight into the relationship between glaucoma genotypes and phenotypes.
3

Expression and production of the Saccharomyces cerevisiae haze protective factor 2 for sensory studies and further investigation into the role of glycosylation.

Macintyre, Oenone Jean January 2008 (has links)
White wine clarity is essential, but it can be marred by the presence of a protein haze. This protein haze is predominantly formed by grape-derived thaumatin-like proteins and chitinases, which can slowly denature and aggregate if left in bottled wines. Currently bentonite fining is used by the wine industry to prevent protein haze. Bentonite consists of fine clay particles that, when added to wine, bind and remove the haze-forming proteins. However this method is inconvenient, time-consuming, and causes significant losses of wine. It is estimated that this process costs the Australian wine industry $50 m annually in wine losses alone. Alternatives are thus being investigated. The principal objective of this thesis was to investigate the sensory effects on wine of an alternative method to bentonite fining: addition of haze protective factor 2, known as Hpf2. Hpf2 is a Saccharomyces cerevisiae mannoprotein that has been shown to reduce protein haze in wines. It is a highly mannosylated 180 kDa protein, of which approximately 75% by weight is mannose. Previous work has shown that the addition of approximately 200 mg L⁻¹ Hpf2 to wines reduces the visible haze in wine by approximately 50%. Hpf2 is naturally present in wines at concentrations of less than 10 ng L⁻¹, much lower than the concentration required for haze protection activity. However, the sensory impacts involved with the addition of such high concentrations of Hpf2 in wine have never been studied. This knowledge is essential for the future commercial prospects of this alternative approach to protein stabilisation of wine. To undertake sensory studies, over 1 g of Hpf2 would be required. Presently, the laboratory-scale process for the production of a 6-histidine tagged version of the protein, 6xHisHpf2, in a laboratory yeast strain of S. cerevisiae, produces only milligram quantities. Consequently, the first challenge of this research was to scale up the existing process to produce sufficient quantities of Hpf2. The first attempt to increase the production level was by over-expression in the bacteria Escherichia coli. Although several approaches were trialled, 6xHisHpf2 was unable to be successfully and consistently expressed in this system. The second method was by improving the original yeast expression system, and the expression level was able to be improved approximately 10-fold. This improved expression method was scaled up to produce and then purify over 1 g of protein. Several quantification methods were assessed to determine the efficiencies of each purification step, with slot blot analysis proving successful. Sensory trials were conducted to establish the effect of 6xHisHpf2 on wines, with duo-trio studies conducted assessing both aroma and palate of the wines. Invertase, another yeast haze protective factor, was also trialled. It was found that the addition of an active level of 6xHisHpf2 or invertase did not cause a significant difference in the aroma or palate of wines. In addition to this main study, the role of the glycosylation was studied. 6xHisHpf2, produced in a different yeast, Pichia pastoris, was found to be 83 kDa, with only 50% mannose. This protein was compared to the S. cerevisiae protein in its ability to reduce protein haze, and it was shown that the P. pastoris protein could reduce haze, but not as effectively as the S. cerevisiae protein. The finding that Hpf2 does not affect the sensory properties of wine is essential if Hpf2 is to be used commercially, as winemakers and wine consumers would most likely reject an additive that alters the wine aroma or palate. This work has brought the wine industry a step closer to a new method for protein haze prevention in white wines. / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2008
4

Expression and production of the Saccharomyces cerevisiae haze protective factor 2 for sensory studies and further investigation into the role of glycosylation.

Macintyre, Oenone Jean January 2008 (has links)
White wine clarity is essential, but it can be marred by the presence of a protein haze. This protein haze is predominantly formed by grape-derived thaumatin-like proteins and chitinases, which can slowly denature and aggregate if left in bottled wines. Currently bentonite fining is used by the wine industry to prevent protein haze. Bentonite consists of fine clay particles that, when added to wine, bind and remove the haze-forming proteins. However this method is inconvenient, time-consuming, and causes significant losses of wine. It is estimated that this process costs the Australian wine industry $50 m annually in wine losses alone. Alternatives are thus being investigated. The principal objective of this thesis was to investigate the sensory effects on wine of an alternative method to bentonite fining: addition of haze protective factor 2, known as Hpf2. Hpf2 is a Saccharomyces cerevisiae mannoprotein that has been shown to reduce protein haze in wines. It is a highly mannosylated 180 kDa protein, of which approximately 75% by weight is mannose. Previous work has shown that the addition of approximately 200 mg L⁻¹ Hpf2 to wines reduces the visible haze in wine by approximately 50%. Hpf2 is naturally present in wines at concentrations of less than 10 ng L⁻¹, much lower than the concentration required for haze protection activity. However, the sensory impacts involved with the addition of such high concentrations of Hpf2 in wine have never been studied. This knowledge is essential for the future commercial prospects of this alternative approach to protein stabilisation of wine. To undertake sensory studies, over 1 g of Hpf2 would be required. Presently, the laboratory-scale process for the production of a 6-histidine tagged version of the protein, 6xHisHpf2, in a laboratory yeast strain of S. cerevisiae, produces only milligram quantities. Consequently, the first challenge of this research was to scale up the existing process to produce sufficient quantities of Hpf2. The first attempt to increase the production level was by over-expression in the bacteria Escherichia coli. Although several approaches were trialled, 6xHisHpf2 was unable to be successfully and consistently expressed in this system. The second method was by improving the original yeast expression system, and the expression level was able to be improved approximately 10-fold. This improved expression method was scaled up to produce and then purify over 1 g of protein. Several quantification methods were assessed to determine the efficiencies of each purification step, with slot blot analysis proving successful. Sensory trials were conducted to establish the effect of 6xHisHpf2 on wines, with duo-trio studies conducted assessing both aroma and palate of the wines. Invertase, another yeast haze protective factor, was also trialled. It was found that the addition of an active level of 6xHisHpf2 or invertase did not cause a significant difference in the aroma or palate of wines. In addition to this main study, the role of the glycosylation was studied. 6xHisHpf2, produced in a different yeast, Pichia pastoris, was found to be 83 kDa, with only 50% mannose. This protein was compared to the S. cerevisiae protein in its ability to reduce protein haze, and it was shown that the P. pastoris protein could reduce haze, but not as effectively as the S. cerevisiae protein. The finding that Hpf2 does not affect the sensory properties of wine is essential if Hpf2 is to be used commercially, as winemakers and wine consumers would most likely reject an additive that alters the wine aroma or palate. This work has brought the wine industry a step closer to a new method for protein haze prevention in white wines. / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2008
5

A Biophysical Investigation of Calcineurin Binding to Calmodulin

Yadav, Dinesh Kumar 08 December 2017 (has links)
Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development, and nervous system function. Previous studies have suggested that the regulatory domain (RD) of CaN binds Calmodulin (CaM) towards the N-terminal end of CaN. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the regulatory domain, although the mechanistic details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the auto inhibitory domain (AID) from the active site of CaN, which activates phosphatase activity. In the absence of calcium-loaded CaM, the RD is at least partially disordered, and binding of CaM induces folding in the RD. Previous studies have shown that an ?-helical structure forms in the N-terminal half of the RD, but organization may occur in the C-terminal region as well. Here, we are presenting a model for the structural transition of the full length RD as it binds to CaM. Using nuclear magnetic resonance (NMR) spectroscopy, we have successfully assigned >85% of the 15N, 13C?, 13C? and HN chemical shifts of the unbound, regulatory domain of CaN. Secondary chemical shifts support a model where the RD is highly disordered. Our study of the CaM and CaN interaction supports the formation of a distal helix in the region between the AID and calmodulin-binding region. Heat capacity changes upon binding predict that 43 residues fold when CaM binds to CaN, consistent with the formation of this distal helix. Paramagnetic relaxation enhancement (PRE) studies of this interaction suggest a potential binding mode where the distal helix binds to CaM near residues I10-A11. Mutagenesis in the distal helix disrupts PREs, further supporting this hypothesis. Together, these data suggest that the interactions between CaM and the distal helix of CaN can be important in regulation of phosphatase activity.
6

Optimizing the large-scale production of Saw1 and the Saw1-Rad1-Rad10 nuclease complex for structural studies

Rashev, Margarita January 2017 (has links)
Yeast Rad1-Rad10 is a structure specific nuclease that processes branched double-strand break (DSB) repair intermediates; the persistence of which can impede normal DNA metabolism. The single strand annealing (SSA) mechanism of DSB repair acts when homologous repeats flank both sides of the DSB. End resection from the 5′ ends of the break exposes complementary sequences at the flanking repeats, which are annealed to form 3′ non-homologous flap structures. Saw1 recruits Rad1-Rad10 recruits to these 3′ non-homologous flaps, where Rad1-Rad10 incises the DNA and removes the flap. Saw1 has affinity towards branched DNA structures and forms a stable complex with Rad1-Rad10. The mechanism of both structure specific recruitment and nucleolytic activity of the Saw1-Rad1-Rad10 complex is currently unknown. To study this nuclease complex, we need to produce large quantities of pure, stable, and active recombinant protein. Using dynamic light scattering (DLS) and differential scanning fluorimetry (DSF)-based high throughput thermal stability assays, we have developed a method for large-scale production of recombinant Saw1. This optimized method has increased the stability and yield of protein, thereby allowing for future biochemical investigation of Saw1. Similarly, we have optimized the large-scale production of the higher molecular-weight complex (Saw1-Rad1-Rad10) and improved the homogeneity of the recombinant complex. We have also biochemically characterized the minimal branched DNA substrates for both Saw1 and Saw1-Rad1-Rad10. This work allows for biochemical investigation into the molecular mechanism of eukaryotic 3′ non-homologous flap removal during SSA. / Thesis / Master of Science (MSc)
7

Charakterizace glutamátkarboxypeptidasy II, jejích blízkých homologů a jejich interakcí s ligandy / Characterization of Glutamate Carboxypeptidase II, its Close Homologs and their Interaction with Ligands

Tykvart, Jan January 2015 (has links)
Cancer, group of diseases characterized by an uncontrolled cell growth, represents one of the great challenges of modern clinical research. Currently, the standard treatment of the cancer disease relies mainly on the whole body exposition to various factors, which targets the dividing cells, combined with surgical resection of the tumor. Unfortunately, this treatment is sometimes accompanied by numerous severe side-effects (e.g., nausea, loss of hair, infertility etc.). Therefore, in the past 40 years enormous resources and effort have been invested into finding a way how to specifically target and destroy the cancerous cells. This goal has been primarily addressed by the search for molecules, mainly proteins, which are predominantly expressed in the cancerous tissues compared to the healthy cells. Glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), represents such a target since it is highly expressed in a prostate carcinoma as well as in a solid tumor neovasculature. Additionally, GCPII is widely used as a model target molecule for proof-of-principle studies on targeted drug delivery. GCPII thorough biochemical characterization is essential for its appropriate use. Therefore, our laboratory has been investigating GCPII from various perspectives for more...
8

Mutagenesis of the sugar donor site of the Arabidopsis thaliana glycosyltransferase UGT72B1

Palmqvist, Emma January 2010 (has links)
The Arabidopsis thaliana glycosyltransferase UGT72B1 is one of many enzymes which catalyze the reaction oflinking a glucose moiety from UDP-glucose to an acceptor molecule, in this case a chloroaniline or a chlorophenol. This is part of a detoxification system of the plant cell, similar to that in humans where a glucuronosyltransferases are enabling drug metabolism. It would be of interest to investigate the activity of the human enzyme towards different pharmaceuticals and determine the effect the linkage of glucose has to properties of the compounds. However, the human enzymes are membrane proteins and thus difficult to purify and crystallize. Here, an attempt was made to instead change the substrate specificity of UGT72B1 from UDPglucose to UDP-glucuronic acid. Combination of the four point mutations G18S, P139R, W367S and AG387ED were introduced in UGT72B1. However, no UDP-glucuronic acid activity was obtained. Single mutants W367S and AG387ED retained similar activity as of the wildtype while P139R had highly reduced activity and G18S was not expressed at all. All other combinations of mutations resulted in even less activity. Four chimeric proteins were also constructed. They were combinations of the UGT72B1 and the human enzyme UGT2B4. These were all soluble proteins but no activity could be determined. / Glykosyltransferaset UGT72B1 från Arabidopsis thaliana är ett av många enzymer som katalyserar reaktionen där en glukosenhet från UDP-glukos länkas till en acceptormolekyl, i det här fallet en kloranilin eller en klorfenol. Det är en del av ett detoxifieringssytem i växtcellen, som liknar det i människan, där ett glukuronosyltransferas möjliggör nedbrytning av bl.a. läkemedel. Det vore intressant att kunna undersöka de humana enzymernas aktivitet mot olika läkemedel och även fastställa effekten glukoslänkningen har på dessa substansers egenskaper. De humana enzymerna är dock membranprotein och är därför svåra att rena fram och att kristallisera. Här har istället ett försök gjorts för att ändra substratspecificiteten hos UGT72B1 från UDP-glukos till UDP-glukuronsyra. Kombinationer av de fyra punktmutationerna G18S, P139R, W367S och AG387ED introducerades i UGT72B1. Ingen aktivitet med UDP-glukuronsyra erhölls dock. Enkelmutanterna W367S och AG387ED bibehöll liknande aktivitet som vildtypen, medan P139R hade starkt reducerad aktivitet och G18S uttrycktes inte alls. Alla andra kombinationer av mutationer resulterade i ännu lägre aktivitet. Fyra chimeriska proteiner konstruerades också. De skapades genom kombination av UGT72B1 och det humana enzymet UGT2B4. Dessa var alla lösliga proteiner men ingen av dem uppvisade någon aktivitet.
9

USING RECOMBINANT HUMAN CARBAMOYL PHOSPHATE SYNTHETASE 1 (CPS1) FOR STUDYING THIS ENZYME'S FUNCTION, REGULATION, PATHOLOGY AND STRUCTURE

Díez Fernández, Carmen 09 July 2015 (has links)
[EN] Carbamoyl phosphate synthetase 1 (CPS1), a 1462-residue mitochondrial enzyme, catalyzes the entry of ammonia into the urea cycle, which converts ammonia, the neurotoxic waste product of protein catabolism, into barely toxic urea. The urea cycle inborn error and rare disease CPS1 deficiency (CPS1D) is inherited with mendelian autosomal recessive inheritance, being due to CPS1 gene mutations (>200 mutations reported), and causing life-threatening hyperammonemia. We have produced recombinantly human CPS1 (hCPS1) in a baculovirus/insect cell expression system, isolating the enzyme in active and highly purified form, in massive amounts. This has allowed enzyme crystallization for structural studies by X-ray diffraction (an off-shoot of the present studies). This hCPS1 production system allows site-directed mutagenesis and enzyme characterization as catalyst (activity, kinetics) and as protein (stability, aggregation state, domain composition). We have revealed previously unexplored traits of hCPS1 such as its domain composition, the ability of glycerol to replace the natural and essential CPS1 activator N-acetyl-L-glutamate (NAG), and the hCPS1 protection (chemical chaperoning) by NAG and by its pharmacological analog N-carbamyl-L-glutamate (NCG). We have exploited this system to explore the effects on the activity, kinetic parameters and stability/folding of the enzyme, and to test the disease-causing nature, of mutations identified in patients with CPS1 deficiency (CPS1D). These results, supplemented with those obtained with other non-clinical mutations, have provided novel information on the functions of three non-catalytic domains of CPS1. We have introduced three CPS1D-associated mutations and one trivial polymorphism in the glutaminase-like domain of CPS1, supporting a stabilizing and an activity-enhancing function of this non-catalytic domain. Two mutations introduced into the bicarbonate phosphorylation domain have shed light on bicarbonate binding and have directly confirmed the importance of this domain for NAG binding to the distant (in the sequence) C-terminal CPS1 domain. The introduction of 18 CPS1D-associated missense mutations mapping in a clinically highly eloquent central non-catalytic domain have proven the disease-causing nature of most of these mutations while showing that in most of the cases they trigger enzyme misfolding and/or destabilization. These results, by proving an important role of this domain in the structural integration of the multidomain CPS1 protein, have led us to call this domain the Integrating Domain. Finally, we have examined the effects of eight CPS1D-associated mutations, of one trivial polymorphism and of five non-clinical mutations, all of them mapping in the C-terminal domain of the enzyme where NAG binds, whereas we have re-analyzed prior results with another four clinical and five non-clinical mutations affecting this domain. We have largely confirmed the pathogenic nature of the clinical mutations, predominantly because of decreased activity, in many cases due to hampered NAG binding. A few mutations had substantial negative effects on CPS1 stability/folding. Our analysis reveals that NAG activation begins with a movement of the final part of the ß4-¿4 loop of the NAG site. Transmission of the activating signal to the phosphorylation domains involves helix ¿4 from this domain and is possibly transmitted by the mutually homologous loops 1313-1332 and 778-787 (figures are residue numbers) belonging, respectively, to the carbamate and bicarbonate phosphorylation domains. These two homologous loops are called from here on Signal Transmission Loops. / [ES] La carbamil fosfato sintetasa 1 (CPS1), una enzima mitocondrial, cataliza la entrada del amonio en el ciclo de la urea, que convierte esta neurotoxina derivada del catabolismo de las proteínas en urea, mucho menos tóxica. El déficit de CPS1 (CPS1D) es un error innato del ciclo de la urea, una enfermedad rara autosómica recesiva, que se debe a mutaciones en el gen CPS1 (>200 mutaciones descritas) y que cursa con hiperamonemia. Hemos producido CPS1 humana recombinante (hCPS1) en un sistema de expresión de células de insecto y baculovirus, y la hemos aislado en forma activa, muy pura y en cantidad elevada. Este sistema de producción de hCPS1 permite la realización de mutagénesis dirigida y la caracterización de la enzima como catalizador (actividad, cinética) y como proteína (estabilidad, estado de agregación y composición de dominios). Hemos revelado características de la hCPS1 antes no exploradas como es la composición de dominios, la capacidad que tiene el glicerol para reemplazar al activador natural y esencial de la CPS1, N-acetil-L-glutamato (NAG), y la protección de la hCPS1 por NAG y por su análogo farmacológico N-carbamil-L-glutamato (NCG) (chaperonas químicas). Hemos utilizado este sistema para explorar los efectos en actividad, parámetros cinéticos y estabilidad/plegamiento de la enzima, y para comprobar la naturaleza patogénica de mutaciones identificadas en pacientes con CPS1D. Estos resultados, junto con los obtenidos con otras mutaciones no clínicas, han aportado información novedosa sobre tres de los dominios no catalíticos de CPS1. Las observaciones realizadas tras introducir en el dominio de tipo glutaminasa de la enzima tres mutaciones asociadas a CPS1D y un polimorfismo trivial, apoyan la contribución de este dominio no catalítico a la estabilidad y a aumentar la actividad de la enzima. Dos mutaciones introducidas en el dominio de fosforilación de bicarbonato han arrojado luz sobre el modo de unión del bicarbonato (un sustrato). Los resultados de estas mutaciones también han confirmado la contribución de este dominio para la unión de NAG, cuyo sitio de unión se encuentra en el dominio C-terminal de CPS1, bastante alejado (en la secuencia) del dominio de fosforilación de bicarbonato. Además, hemos introducido 18 mutaciones de cambio de sentido asociadas a CPS1D, las cuales están localizadas en un dominio no catalítico, central y de elevada elocuencia clínica. Estos resultados han demostrado la naturaleza patogénica de estas mutaciones, ya que en la mayoría de los casos estas mutaciones producen un mal plegamiento o/y desestabilización de la enzima. Debido a que estos resultados han puesto de manifiesto el importante papel de este dominio en la integración estructural de la proteína multidominio CPS1, lo hemos llamado Dominio Integrador. Finalmente, hemos examinado los efectos de 8 mutaciones asociadas a CPS1D, de un polimorfismo trivial y de 5 mutaciones no clínicas, todas localizadas en el dominio C-terminal de la enzima, donde se une NAG. Además, hemos reanalizado resultados anteriores con otras 4 mutaciones clínicas y 5 no clínicas afectando a este dominio. Hemos confirmado el carácter patogénico de las mutaciones clínicas, las cuales predominantemente causan una disminución en la actividad enzimática, en muchos casos debida a que la unión de NAG se encuentra obstaculizada. Unas pocas mutaciones mostraron efectos negativos en la estabilidad/plegamiento de CPS1. Nuestros análisis revelan que la activación por el NAG empieza con un movimiento de la parte final del bucle ß4-¿4 del sitio de NAG. La transmisión de la señal activadora a los dominios de fosforilación implica a la hélice ¿4 de este dominio y posiblemente se transmite a través de los bucles homólogos 1313-1332 y 778-787 (numeración de residuos) pertenecientes, respectivamente, a los dominios de fosforilación de carbamato y bicarbonato. Por ello, hemos llamado a ambos bucles Bucles de / [CAT] La carbamil fosfat sintetasa 1 (CPS1), un enzim mitocondrial, catalitza l'entrada d'amoni en el cicle de la urea, que convertix l'amoni, producte neurotòxic del catabolisme de les proteïnes, en urea, una molècula molt poc tòxica. El dèficit de CPS1 (CPS1D) és un error innat del cicle de la urea, una malaltia rara autosòmica recessiva, que es deu a mutacions en el gen CPS1 (>200 mutacions descrites) i que cursa amb hiperamonièmia. Hem produït CPS1 humana recombinant (hCPS1) en un sistema d'expressió de cèl·lules d'insecte i baculovirus, i l'hem aïllada en forma activa, molt pura i en gran quantitat. Això ha permés la cristal·lització de l'enzim per a estudis estructurals amb difracció de raios-X (treball no inclòs en esta tesi Aquest sistema de producció de hCPS1 permet la realització de mutagènesi dirigida i la caracterització de l'enzim com a catalitzador (activitat, cinètica) i com a proteïna (estabilitat, estat d'agregació i composició de dominis). Hem revelat característiques de la hCPS1 no explorades abans com és la composició de dominis, la capacitat que té el glicerol per a reemplaçar l'activador natural i essencial de CPS1, N-acetil-L-glutamat (NAG), i la protecció de la hCPS1 per NAG i pel seu anàleg farmacològic N-carbamil-L-glutamat (NCG) (xaperones químiques) . Hem utilitzat aquest sistema per a explorar els efectes en l'activitat, els paràmetres cinètics i l'estabilitat/plegament de l'enzim, i per a comprovar la naturalesa patogènica de mutacions identificades en pacients amb CPS1D. Aquestos resultats, junt amb els obtinguts amb altres mutacions no clíniques, han aportat informació nova sobre tres dels dominis no catalítics de la CPS1. Les observacions, després d'introduir tres mutacions associades a CPS1D i un polimorfisme trivial en el domini tipus glutaminasa de CPS1, recolzen la contribució d'aquest domini no catalític a l'estabilitat i a l'optimització de l'activitat enzimàtica. Dues mutacions introduïdes en el domini de fosforilació de bicarbonat han esclarit el mode d'unió de bicarbonat. Els resultats d'aquestes mutacions també han confirmat la contribució d'aquest domini per a la unió de NAG, el lloc d'unió de la qual es troba en el domini C-terminal de CPS1, prou allunyat (en la seqüència) del domini de fosforilació de bicarbonat. A més, hem introduït 18 mutacions de canvi de sentit associades a CPS1D, les quals estan localitzades en un domini no catalític, central i d'elevada eloqüència clínica. Aquestos resultats han demostrat la naturalesa patogènica d'aquestes mutacions, ja que, en la majoria dels casos produïxen un mal plegament o/i desestabilització de l'enzim. Pel fet que aquestos resultats han posat de manifest l'important paper d'aquest domini en la integració estructural de la proteïna multidomini CPS1, l'hem anomenat Domini Integrador. Finalment, hem examinat els efectes de huit mutacions associades a CPS1D, un polimorfisme trivial i cinc mutacions no clíniques, totes elles localitzades en el domini C-terminal de l'enzim, on s'unix NAG. A més, hem reanalitzat resultats anteriors amb altres quatre mutacions clíniques i cinc no clíniques que afecten aquest domini. Hem confirmat el caràcter patogènic de les mutacions clíniques, les quals predominantment causen una disminució en l'activitat enzimàtica, en molts casos pel fet que la unió de NAG es troba obstaculitzada. Unes poques mutacions van mostrar efectes negatius substancials en l'estabilitat/plegament de CPS1. Les nostres anàlisis revelen que l'activació de NAG comença amb un moviment de la part final del bucle ß4-¿4 del lloc de NAG. La transmissió del senyal activadora als dominis de fosforilació involucra l'hèlix ¿4 d'aquest domini i es transmet, possiblement, a través dels bucles homòlegs 1313-1332 i 778-787 (numeració dels residus), pertanyents, respectivament, als dominis de fosforilació de carbamato i bicarbonat. Per això, hem anomenat a ambd / Díez Fernández, C. (2015). USING RECOMBINANT HUMAN CARBAMOYL PHOSPHATE SYNTHETASE 1 (CPS1) FOR STUDYING THIS ENZYME'S FUNCTION, REGULATION, PATHOLOGY AND STRUCTURE [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52855 / TESIS

Page generated in 0.1677 seconds