Spelling suggestions: "subject:"1protein superfamily"" "subject:"2protein superfamily""
1 |
Structural Information and Hidden Markov Models for Biological Sequence AnalysisTångrot, Jeanette January 2008 (has links)
Bioinformatics is a fast-developing field, which makes use of computational methods to analyse and structure biological data. An important branch of bioinformatics is structure and function prediction of proteins, which is often based on finding relationships to already characterized proteins. It is known that two proteins with very similar sequences also share the same 3D structure. However, there are many proteins with similar structures that have no clear sequence similarity, which make it difficult to find these relationships. In this thesis, two methods for annotating protein domains are presented, one aiming at assigning the correct domain family or families to a protein sequence, and the other aiming at fold recognition. Both methods use hidden Markov models (HMMs) to find related proteins, and they both exploit the fact that structure is more conserved than sequence, but in two different ways. Most of the research presented in the thesis focuses on the structure-anchored HMMs, saHMMs. For each domain family, an saHMM is constructed from a multiple structure alignment of carefully selected representative domains, the saHMM-members. These saHMM-members are collected in the so called "midnight ASTRAL set", and are chosen so that all saHMM-members within the same family have mutual sequence identities below a threshold of about 20%. In order to construct the midnight ASTRAL set and the saHMMs, a pipe-line of software tools are developed. The saHMMs are shown to be able to detect the correct family relationships at very high accuracy, and perform better than the standard tool Pfam in assigning the correct domain families to new domain sequences. We also introduce the FI-score, which is used to measure the performance of the saHMMs, in order to select the optimal model for each domain family. The saHMMs are made available for searching through the FISH server, and can be used for assigning family relationships to protein sequences. The other approach presented in the thesis is secondary structure HMMs (ssHMMs). These HMMs are designed to use both the sequence and the predicted secondary structure of a query protein when scoring it against the model. A rigorous benchmark is used, which shows that HMMs made from multiple sequences result in better fold recognition than those based on single sequences. Adding secondary structure information to the HMMs improves the ability of fold recognition further, both when using true and predicted secondary structures for the query sequence. / Bioinformatik är ett område där datavetenskapliga och statistiska metoder används för att analysera och strukturera biologiska data. Ett viktigt område inom bioinformatiken försöker förutsäga vilken tredimensionell struktur och funktion ett protein har, utifrån dess aminosyrasekvens och/eller likheter med andra, redan karaktäriserade, proteiner. Det är känt att två proteiner med likande aminosyrasekvenser också har liknande tredimensionella strukturer. Att två proteiner har liknande strukturer behöver dock inte betyda att deras sekvenser är lika, vilket kan göra det svårt att hitta strukturella likheter utifrån ett proteins aminosyrasekvens. Den här avhandlingen beskriver två metoder för att hitta likheter mellan proteiner, den ena med fokus på att bestämma vilken familj av proteindomäner, med känd 3D-struktur, en given sekvens tillhör, medan den andra försöker förutsäga ett proteins veckning, d.v.s. ge en grov bild av proteinets struktur. Båda metoderna använder s.k. dolda Markov modeller (hidden Markov models, HMMer), en statistisk metod som bland annat kan användas för att beskriva proteinfamiljer. Med hjälp en HMM kan man förutsäga om en viss proteinsekvens tillhör den familj modellen representerar. Båda metoderna använder också strukturinformation för att öka modellernas förmåga att känna igen besläktade sekvenser, men på olika sätt. Det mesta av arbetet i avhandlingen handlar om strukturellt förankrade HMMer (structure-anchored HMMs, saHMMer). För att bygga saHMMerna används strukturbaserade sekvensöverlagringar, vilka genereras utifrån hur proteindomänerna kan läggas på varandra i rymden, snarare än utifrån vilka aminosyror som ingår i deras sekvenser. I varje proteinfamilj används bara ett särskilt, representativt urval av domäner. Dessa är valda så att då sekvenserna jämförs parvis, finns det inget par inom familjen med högre sekvensidentitet än ca 20%. Detta urval görs för att få så stor spridning som möjligt på sekvenserna inom familjen. En programvaruserie har utvecklats för att välja ut representanter för varje familj och sedan bygga saHMMer baserade på dessa. Det visar sig att saHMMerna kan hitta rätt familj till en hög andel av de testade sekvenserna, med nästan inga fel. De är också bättre än den ofta använda metoden Pfam på att hitta rätt familj till helt nya proteinsekvenser. saHMMerna finns tillgängliga genom FISH-servern, vilken alla kan använda via Internet för att hitta vilken familj ett intressant protein kan tillhöra. Den andra metoden som presenteras i avhandlingen är sekundärstruktur-HMMer, ssHMMer, vilka är byggda från vanliga multipla sekvensöverlagringar, men också från information om vilka sekundärstrukturer proteinsekvenserna i familjen har. När en proteinsekvens jämförs med ssHMMen används en förutsägelse om sekundärstrukturen, och den beräknade sannolikheten att sekvensen tillhör familjen kommer att baseras både på sekvensen av aminosyror och på sekundärstrukturen. Vid en jämförelse visar det sig att HMMer baserade på flera sekvenser är bättre än sådana baserade på endast en sekvens, när det gäller att hitta rätt veckning för en proteinsekvens. HMMerna blir ännu bättre om man också tar hänsyn till sekundärstrukturen, både då den riktiga sekundärstrukturen används och då man använder en teoretiskt förutsagd. / Jeanette Hargbo.
|
2 |
Comparative genomics reveal ecophysiological adaptations of organohalide-respiring bacteriaWagner, Darlene Darlington 13 November 2012 (has links)
Organohalide-respiring Bacteria (OHRB) play key roles in the reductive
dehalogenation of natural organohalides and anthropogenic chlorinated contaminants. Reductive dehalogenases (RDases) catalyze the cleavage of
carbon-halogen bonds, enabling respiratory energy conservation and growth. Large numbers of RDase genes, a majority lacking experimental characterization
of function, are found on the genomes of OHRB. In silico genomics tools were employed to identify shared sequence features among RDase genes and proteins,
predict RDase functionality, and elucidate RDase evolutionary history. These analyses showed that the RDase superfamily could be divided into proteins
exported to the membrane and cytoplasmic proteins, indicating that not all RDases function in respiration. Further, Hidden Markov models (HMMs) and
multiple sequence alignments (MSAs) based upon biochemically characterized RDases identified previously uncharacterized members of an RDase superfamily,
delineated protein domains and amino acid motifs serving to distinguish RDases from unrelated iron-sulfur proteins. Such conserved and discriminatory features among RDases may facilitate monitoring of organohalide-degrading microbial
communities or improve accuracy of genome annotation. Phylogenetic analyses of RDase superfamily sequences provided evidence of convergent evolution and horizontal gene transfer (HGT) across distinct OHRB
genera. Yet, the low frequency of RDase transfer outside the genus level and the absence of RDase transfer between phyla indicate that RDases evolve primarily
by vertical evolution or HGT is restricted among related OHRB strains. Polyphyletic evolutionary lineages within the RDase superfamily comprise
distantly-related RDases, some exhibiting activities towards the same substrates, suggesting a longstanding history of OHRB adaptation to natural organohalides. Similar functional and phylogenetic analyses provided evidence that nitrous oxide (N₂O, a potent greenhouse gas) reductase (nosZ) genes from versatile OHRB members of the Anaeromyxobacter and Desulfomonile genera comprised a nosZ sub-family evolutionarily distinct from nosZ found in non-OHRB denitrifiers. Hence, elucidation of RDase and NosZ sequence diversity may enhance the mitigation of anthropogenic organohalides and greenhouse gases (i.e., N₂O), respectively. The tetrachloroethene-respiring bacterium Geobacter lovleyi strain SZ exhibited genomic features distinguishing it from non-organohalide-respiring
members of the Geobacter genus, including a conjugative pilus transfer gene cluster, a chromosomal genomic island harboring two RDase genes, and a
diminished set of c-type cytochrome genes. The G. lovleyi strain SZ genome also harbored a 77 kbp plasmid carrying 15 out of the 24 genes involved in biosynthesis of corrinoid, likely related to this strains ability to degrade PCE to cis-DCE in the absence of supplied corrinoid (i.e., vitamin B₁₂). Although corrinoids are essential cofactors to RDases, the strictly organohalide-respiring
Dehalococcoides mccartyi strains are corrinoid auxotrophs and depend upon uptake of extracellular corrinoids via Archaeal and Bacterial salvage pathways. A
key corrinoid salvage gene in D. mccartyi, cbiZ, occurs at duplicated loci adjacent
to RDase genes and appears to have been horizontally-acquired from Archaea. These comparative genome analyses highlight RDase dependencies upon
corrinoids and also suggest mobile genomic elements (e.g., plasmids) are associated with organohalide respiration and corrinoid acquisition among OHRB. In summary, analyses of OHRB genomes promise to enable more complete
modeling of metabolic and evolutionary processes associated with the turnover of organohalides in anoxic environments. These efforts also expand knowledge of
biomarkers for monitoring OHRB activity in anoxic environments, and will improve our understanding of the fate of chlorinated contaminants.
|
3 |
Bioinformatic Identification and Analysis of Hydroxyproline-rich Glycoproteins in PlantsLiu, Xiao 19 September 2017 (has links)
No description available.
|
Page generated in 0.0662 seconds