• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of the interplay of protein biogenesis factors at the ribosome exit site reveals new role for NAC

10 June 2020 (has links)
Yes / The ribosome exit site is a focal point for the interaction of protein-biogenesis factors that guide the fate of nascent polypeptides. These factors include chaperones such as NAC, N-terminal-modifying enzymes like Methionine aminopeptidase (MetAP), and the signal recognition particle (SRP), which targets secretory and membrane proteins to the ER. These factors potentially compete with one another in the short time-window when the nascent chain first emerges at the exit site, suggesting a need for regulation. Here, we show that MetAP contacts the ribosome at the universal adaptor site where it is adjacent to the α subunit of NAC. SRP is also known to contact the ribosome at this site. In the absence of NAC, MetAP and SRP antagonize each other, indicating a novel role for NAC in regulating the access of MetAP and SRP to the ribosome. NAC also functions in SRP-dependent targeting and helps to protect substrates from aggregation before translocation. / This work was supported by grants from the BBSRC [H007202/1] and Wellcome Trust [097820/Z/11/A].
12

Deciphering the Mechanism of E. coli tat Protien Transport: Kinetic Substeps and Cargo Properties

Whitaker, Neal William 1982- 14 March 2013 (has links)
The Escherichia coli twin-arginine translocation (Tat) system transports fully folded and assembled proteins across the inner membrane into the periplasmic space. The E. coli Tat machinery minimally consists of three integral membrane proteins: TatA, TatB and TatC. A popular model of Tat translocation is that cargo first interacts with a substrate binding complex composed of TatB and TatC and then is transported across the inner membrane through a channel comprised primarily of TatA. The most common method for observing the kinetics of Tat transport, a protease protection assay, lacks the ability to distinguish between individual transport sub-steps and is limited by the inability to observe translocation in real-time. Therefore, a real-time FRET based assay was developed to observe interactions between the cargo protein pre-SufI, and its initial binding site, the TatBC complex. The cargo was found to first associate with the TatBC complex, and then, in the presence of a membrane potential (∆psi), migrate away from the initial binding site after a 20-45 second delay. Since cargo migration away from the TatBC complex was not directly promoted by the presence of a ∆psi, the delay likely represents some preparatory step that results in a transport competent translocon. In addition, the Tat system has long been identified as a potential biotechnological tool for protein production. However, much is still unknown about which cargos are suitable for transport by the Tat system. To probe the Tat system’s ability to transport substrates of different sizes and shapes, 18 different cargos were generated using the natural Tat substrate pre-SufI as a base. Transport efficiencies for these cargos indicate that not only is the Tat machinery’s ability to transport substrates determined by the protein’s molecular weight, as well as by its dimensions. In total, these results suggest a dynamic translocon that undergoes functionally significant, ∆psi-dependent changes during translocation. Moreover, not every protein cargo can be directed through the Tat translocon by a Tat signal peptide, and this selectivity is not only related to the overall size of the protein, but also dependent on shape.
13

An unrecognized function for COPII components in recruiting the viral replication protein BMV 1a to the perinuclear ER

Li, Jianhui, Fuchs, Shai, Zhang, Jiantao, Wellford, Sebastian, Schuldiner, Maya, Wang, Xiaofeng 01 October 2016 (has links)
Positive-strand RNAviruses invariably assemble their viral replication complexes (VRCs) by remodeling host intracellular membranes. How viral replication proteins are targeted to specific organelle membranes to initiate VRC assembly remains elusive. Brome mosaic virus (BMV), whose replication can be recapitulated in Saccharomyces cerevisiae, assembles its VRCs by invaginating the outer perinuclear endoplasmic reticulum (ER) membrane. Remarkably, BMV replication protein 1a (BMV 1a) is the only viral protein required for such membrane remodeling. We show that ER-vesicle protein of 14 kD (Erv14), a cargo receptor of coat protein complex II (COPII), interacts with BMV 1a. Moreover, the perinuclear ER localization of BMV 1a is disrupted in cells lacking ERV14 or expressing dysfunctional COPII coat components (Sec13, Sec24 or Sec31). The requirement of Erv14 for the localization of BMV 1a is bypassed by addition of a Sec24-recognizable sorting signal to BMV 1a or by overexpressing Sec24, suggesting a coordinated effort by both Erv14 and Sec24 for the proper localization of BMV 1a. The COPII pathway is well known for being involved in protein secretion; our data suggest that a subset of COPII coat proteins have an unrecognized role in targeting proteins to the perinuclear ER membrane.
14

Úloha SNARE proteinu v biogenezi mitosomů Giardia intestinalis. / Role of a SNARE protein in the biogenesis of Giardia intestinalis mitosomes.

Voleman, Luboš January 2011 (has links)
SNARE proteins play essential role in most membrane fusions taking place in eukaryotic cell. They are responsible for all fusions that occur across endocytic and secretory pathways. Apart from these processes stand mitochondria and plastids. Fusion of these organelles is directed by specific protein machineries. In this work we review up-to-date information on SNARE mediated membrane fusion and fusion of outer and inner mitochondrial membranes with an emphasis on situation in flagellated protozoan parasite Giradia intestinalis. It was suggested that one of typical SNARE protein in Giardia (GiSec20) is localised to its highly reduced mitochondria called mitosomes. This protein is also essential for surviving of Giardia trophozoites. In this work we show that mitosomal localization of Gisec20 is caused by episomal expression however the protein is localised to endoplasmic reticulum under physiological conditions. Using GFP tag we were able to characterize its targeting signal which showed to be localised in transmembrane domain of GiSec20. This signal targets the protein to mitosomes of G. intestinalis and S. cerevisiae, respectively. Mitosomal localization was prevented by adding 3'UTR to gene sequence and its episomal expression. This suggests existence of targeting mechanism based on information...
15

Evaluace vlastností polymerních konjugátů specificky vážících proteiny pro použití v molekulární biologii / Evaluation of the properties of polymer conjugates which specifically bind proteins and can be used in molecular biology

Parolek, Jan January 2015 (has links)
During last three decades, a great effort was invested to the development of polymer conjugates of low molecular drugs with the aim to improve the specific targeting of drugs to diseased tissues, cells and organs. The main reason for this effort was the fact that high molecular weight copolymers have a favourite distribution profile in tissues and organisms. A linker between a polymer backbone and drug has very important role: it is possible to synthesize a biodegradable linker, which can be enzymatically hydrolyzed. Conversely, there is a possibility to synthesize an inert linker, resistant to the hydrolysis. Proper choice of the suitable precursor- polymer is also essential, hence it has to accomplish all of the stringent demands for biocompatibility. Macromolecular polymer-drug conjugates tend to accumulate in solid tumors because of the so called enhanced permeability and retention (EPR) effect. There is a whole range of possible applications of high molecular polymer-drug conjugates. In the introduction part of this thesis, I summarize potential use of drugs based on poly(N-(2-hydroxypropyl)methacrylamide) (HPMA) copolymers. Moreover, I introduce some therapeutically important proteins used in experimental drug discovery. In our laboratory, we have developed a concept of HPMA copolymers...
16

Structures of protein targeting complexes

Halic, Mario 27 April 2006 (has links)
Sowohl die kotranslationale Translokation von sekretorischen Proteinen durch die Membran als auch die Insertion von Membranproteinen sind essentielle Prozesse in allen lebenden Zellen. Sie erfordern die Sortierung des translatierenden Ribosoms zur Membran mittels des Signalerkenungspartikels (SRP), eines im Verlauf der Evolution konservierten Ribonukleoprotein-Partikels. SRP erkennt die Signalsequenz einer wachsenden Proteinkette, sobald diese aus dem Ribosom hervortritt. Die Bindung von SRP führt zum Anhalten der Peptidelongation (Elongationsarrest) und zum Andocken an den membrangebundenen SRP-Rezeptor (SR). In dieser Arbeit wird die 12 Å Kryo-Elektronenmikroskopie-Struktur eines Sortierungs-Komplexes dargestellt, der aus dem Säugetier-SRP gebunden an ein aktives Ribosom mit Signalsequenz besteht. Ein erstes molekulares Modell von SRP in dieser Konformation wurde erzeugt. Es zeigt wie die S-Domäne von SRP die große ribosomale Untereinheit nahe dem Peptidtunnel-Ausgang kontaktiert, um dort die Signalsequenz zu binden. Außerdem wird deutlich wie die Alu-Domäne von SRP in die Bindungsstelle für Elongationsfaktoren hineinreicht, wodurch die Elongationsarrest-Aktivität der Alu-Domäne erklärt wird. Auf dieser Basis konnte ein erstes Struktur-basiertes Modell der ersten Schritte der kotranslationalen Proteinsortierung entworfen werden. Darüberhinaus wurde auch der Schritt des Andockens an die Membran visualisiert, indem die Struktur des Ribosom-SRP-SR-Komplexes durch Kryo-EM gelöst wurde. Erste Schlüsse hinsichtlich des Mechanismus, der das Ribosom vom SRP zum Translokon transferiert, können hier gezogen werden. Als Nebenergebnis konnte durch die erreichte hohe Auflösung die Position des wichtigen ribosomalen Proteins L30e in der Kryo-EM-Struktur des Weizenkeim-Ribosoms idenifiziert werden. / Cotranslational translocation of proteins across or into membranes is a vital process in all kingdoms of life. It requires targeting of the translating ribosome to the membrane by the signal recognition particle (SRP), an evolutionary conserved ribonucleoprotein particle. SRP recognizes signal sequences of nascent protein chains emerging from the ribosome. Subsequent binding of SRP leads to pausing of peptide elongation and docking to the membrane-bound SRP receptor. Here, the 12 Å cryo-electron microscopy structure of a targeting complex is presented consisting of mammalian SRP bound to an active 80S ribosome carrying a signal sequence. A molecular model of SRP in this functional conformation was generated. The model reveals how the S-domain of SRP contacts the large ribosomal subunit at the nascent chain exit site to bind the signal sequence, and that the Alu-domain reaches into the elongation factor binding site of the ribosome explaining its elongation arrest activity. A molecular model of the first steps of protein targeting is presented. Moreover, also the docking step has been visualized by solving a cryo-EM structure of the ribosome-SRP complex bound to the SRP receptor. This structure provides first hints regarding the mechanism of ribosome transfer to the translocon. As a side result the position of the functionally significant ribosomal protein L30e has been identified in the high resolution maps of the wheat germ ribosome.
17

Cryo-microscopie électronique des complexes de l'adressage et de la translocation co-traductionnelle chez E. coli / Electron cryo-microscopy of complexes in E. coli co-translational targeting and translocation

Jiang, Qiyang 18 June 2015 (has links)
La membrane cellulaire est la barrière qui sépare l'intérieur des cellules de l'environnement extérieur. Elle se compose de lipides et de protéines. Les gènes codant pour les protéines membranaires représentent environ 30% des génomes. Les protéines membranaires sont synthétisées dans le cytosol par les ribosomes, mais suivent des voies spécifiques pour s'intégrer dans la membrane cellulaire. Les ribosomes en cours de traduction de protéines membranaires sont reconnus dans le cytosol et adressés à la membrane. Par la suite, les chaînes naissantes de protéines membranaires sont insérées dans la bicouche lipidique puis repliées de façons appropriées, ce mécanisme s'appelle la translocation. Le processus d'adressage est médiée par la particule de reconnaissance du signal (SRP) et son récepteur, tandis que la translocation est effectuée par un certain nombre de complexes de protéines membranaires.Cette thèse décrit deux des complexes impliqués dans cet adressage et translocation co-traductionnelle chez Escherichia coli : Le complexe ribosome-SRP-FtsY pour l'adressage en conformation «fermé» et le complexe dans lequel le ribosome est lié à l'holo-translocon (HTL) qui se compose de sept protéines membranaires. J'ai utilisé principalement la cryo-microscopie électronique pour caractériser ces complexes. La cryo-EM permet de déterminer la structure des échantillons biologiques à une résolution supérieure au nanomètre dans leur environnement natif, sans avoir à le cristalliser. Dans ce travail, j'ai bénéficié des améliorations récentes dans l'équipementet le traitement d'image.A partir d'un ensemble de données de cryo-EM obtenu par les membres du groupe, j‘ai déterminé la structure du complexe ribosome-SRP-FtsY en conformation «fermé» avec une résolution de 5.7 Å. Différentes stratégies de tri des calculsont été appliquées pour identifier la partie la plus homogène de l'ensemble des données. La structure montre un domaine bien résolu SRP ARN et SRP M avec une séquence signal liée. L'interaction entre les SRP et le ribosome pourrait être modélisée avec une grande fidélité. Cette structure révèle également que les GTPases SRP-ftsY sont détachées de la tétra-boucle de l'ARN et sont flexibles, libérant alors le site de sortie du ribosomepermettant la liaison du translocons.Dans le second projet, différentes approches ont été poursuivis pour résoudre la structure du complexe ribosome-HTL à haute résolution. Une structure initiale à 22 Å a été obtenue en mélangeant HTL solubilisés en détergent avec des ribosomes, démontrantla possibilité de préserver le complexe dans les conditions utilisées pour la préparation des grilles. J'ai ensuite exploré l'utilisation de nanodiscs et un nouveau détergent appelé LMNG pour stabiliser HTL dans des tampons sans détergent. Un deuxième ensemble de données a ensuite été recueilli à partir d'échantillon obtenu par gradient de fixation, la structure a été résolue à 17 Å. La préparation des échantillons a été optimisée utilisant entre autre les amphipoles. On a montré que deux types d'amphipole-HTL peuvent se lier au ribosome, et des structures de plus grande résolution devrait être obtenu à partir de ces échantillons. / The cell membrane is the barrier that separates the interior of cells from the outside environment. It consists of lipids and proteins. Genes encoding membrane proteins make up about 30% of the genome. Membrane proteins are synthesized in the cytosol by ribosomes, but employ special pathways to integrate into the cell membrane. Ribosomes translating membrane proteins are recognized by special factors in the cytosol and targeted to the membrane. Subsequently, nascent chains of the membrane proteins are inserted into the lipid bilayer and are folded into their proper structures, a process termed translocation. The targeting process is mediated by the signal recognition particle (SRP) and its receptor, while the translocation is performed by a number of membrane protein complexes.This thesis describes two of the complexes involved in co-translational targeting and translocation in Escherichia coli: The ribosome-SRP-FtsY targeting complex in the “closed” conformation and the complex of a ribosome with the holo-translocon (HTL) consisting of seven membrane proteins. I mainly used electron cryo-microscopy to characterize these complexes. Cryo-EM allows structural determination of biological samples at sub-nanometer resolution in their native environment, without the need to crystallize the specimen. In this work, I took advantage of the recent advances in both the hardware and the image processing.Starting from a cryo-EM dataset obtained by group members, I have determined the structure of ribosome-SRP-FtsY complex in the “closed” conformation at 5.7 Å resolution. Different computational sorting strategies were applied to identify the most homogeneous sub-pool of the dataset. The structure shows a well-resolved SRP RNA and SRP M domain with a signal sequence bound. The interaction between SRP and ribosome could be modeled with high confidence. This structure also reveals that the SRP-FtsY GTPases are detached from the RNA tetraloop and are flexible, thus liberating the ribosomal exit site for binding of the translocation machinery.In the second project, different approaches were pursued to solve the structure of the ribosome-HTL complex at high resolution. An initial structure at 22 Å was obtained by mixing detergent-solubilized HTL with the ribosome, demonstrating that it is possible to preserve the complex under the conditions used for specimen preparation. I have then explored the use of nanodiscs and a new detergent called LMNG to stabilize HTL in detergent-free buffers. A second dataset was subsequently collected from a sample prepared by gradient-fixation, and the structure was solved at 17 Å. Sample preparation has been optimized further using amphipols. Two types of amphipol-HTL complexes were shown to bind to the ribosome, and higher resolution structures are expected to be obtained from these samples.
18

Etude du mécanisme de sécrétion des pectinases par le système de sécrétion de type II de la bactérie phytopathogène Dickeya dadantii / Study of the mechanism of pectinases secretion by the type II secretion system of the phytopathogenic bacterium Dickeya dadantii

Pineau, Camille 29 April 2014 (has links)
Le système de sécrétion de type II (T2SS) est largement répandu chez les bactéries à Gram négatif et est, entre autre, exploité par de nombreux pathogènes pour sécréter des facteurs de virulence dans le milieu extérieur. Le T2SS est constitué de 12 à 15 protéines différentes s’associant en une machinerie complexe qui traverse la totalité de l’enveloppe bactérienne. Ce système assure la sécrétion de protéines repliées du périplasme au milieu extracellulaire. Le mode de fonctionnement de cette machinerie n’est toujours pas connu. Pour comprendre les mécanismes moléculaires régissant la sécrétion des protéines par le T2SS, nous avons utilisé comme modèle le T2SS de la bactérie phytopathogène Dickeya dadantii, nommé Out, qui assure la sécrétion de pectinases entrainant la pourriture molle chez de nombreux végétaux. Nous avons employé des approches de pontage disulfure, double hybride bactérien et GST-pull down afin d’étudier l’arrangement et l’organisation des composants au sein du système de sécrétion. Nous avons ainsi montré que les composants de la membrane interne et la sécrétine de la membrane externe se coordonnent entre eux grâce à un réseau d’interactions complexe et dynamique qui peut être modifié par la présence d’une protéine à sécréter. En combinant des approches génétiques, biochimiques, structurales et bioinformatiques, nous avons étudié le mécanisme de reconnaissance de la pectinase PelI, par deux composants majeurs du système, la protéine de membrane interne OutC et la sécrétine OutD qui forme le pore du T2SS dans la membrane externe. Nous avons montré que PelI interagit avec les domaines périplasmiques HR et PDZ d’OutC et N0 et N1 d’OutD. La présence de N1 renforce l’interaction PDZ/PelI suggérant que le processus de sécrétion pourrait être régi par une succession de contacts synergiques. PDZOutC reconnait une boucle de 9 résidus au sein de l’exoprotéine PelI. Cette boucle constitue un motif d’adressage spécifique contrôlant le recrutement de PelI par la machinerie de sécrétion Out. Des études in silico et in vivo ont montré l’existence de régions similaires à cette boucle au sein d’autres pectinases sécrétées par D. dadantii. Par ailleurs, l’interaction N1OutD/PelI impliquerait un contact de brins β ainsi que la région non structurée située en amont de N1. Ces travaux constituent la première démonstration expérimentale du rôle de signal de sécrétion d’un élément structural précis d’une exoprotéine sécrétée par un T2SS. Ils ont également permis pour la première fois de caractériser des sites précis d’interactions entre une protéine sécrétée et des composants du T2SS. Cette étude constitue une avancée majeure dans la compréhension des mécanismes moléculaires qui gouvernent le recrutement et la sécrétion des protéines par le système de type II. / The type II secretion system (T2SS) is widespread in Gram-negative bacteria. It is notably exploited by various pathogenic bacteria to secrete virulence factors into the extracellular milieu and host tissues. The T2SS is composed of 12 to 15 proteins that assemble together into a complex machine that spans the bacterial envelope. It allows the translocation of fully folded proteins from the periplasm across the outer membrane. The exact mode of action of this sophisticated machine is still unknown. The phytopathogenic bacterium Dickeya dadantii uses a T2SS, named Out, to secrete several plant cell-wall degrading enzymes that cause the soft rot disease of many plants. We used the Out system of this bacterium as a model to study the molecular mechanism of protein secretion by T2SS. In order to study the mutual arrangement of the different components of this machinery, we used disulfide bonding, bacterial two hybrid and GST-pull down. We showed that the components of the inner membrane platform interact together and we characterized several interfaces between the inner membrane component OutC and the outer membrane secretin OutD. These various contacts create a complex and dynamic network within the secretion machine that can be modulated by the presence of a protein to be secreted. Subsequently, we combined genetic, biochemical, structural and bioinformatics approaches to study how the pectinase PelI is recognized by the inner membrane component OutC and the pore-forming secretin OutD. We showed that PelI interacts with the periplasmic domains HR and PDZ of OutC and N0 and N1 of OutD. The presence of N1OutD positively modulates the PDZ/PelI interaction, suggesting that protein progression through the T2SS could involve a succession of synergistic contacts. The OutC PDZ domain recognizes a short loop of PelI. This loop acts as a specific secretion signal that controls exoprotein recruitment by the T2SS. Concerted in silico and in vivo approaches suggest the occurrence of equivalent secretion motifs in other exoproteins. The interaction between PelI and OutD could involve a β-strand contact and an intrinsically disordered region located upstream of N1. This work provides the first experimental evidence of molecular mechanisms that govern exoprotein recruitment by the T2SS. Notably, we identified a short structural element acting as a secretion signal and characterized for the first time the interfaces between the T2SS components and a protein to be secreted. This study provides important new mechanistic insights to understand the functioning of this secretion machine.
19

Glutamátkarboxypeptidasa II jako cíl farmaceutického zásahu a molekulární adresa pro léčbu nádorových onemocnění / Glutamate Carboxypeptidase II as a Drug Target and a Molecular Address for Cancer Treatment

Knedlík, Tomáš January 2018 (has links)
Glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA), is a membrane metallopeptidase overexpressed on most prostate cancer cells. Additionally, GCPII also attracted neurologists' attention because it cleaves neurotransmitter N-acetyl-L-aspartyl-L-glutamate (NAAG). Since NAAG exhibits neuroprotective effects, GCPII may participate in a number of brain disorders, which were shown to be ameliorated by GCPII selective inhibitors. Therefore, GCPII has become a promising target for imaging and prostate cancer targeted therapy as well as therapy of neuronal disorders. Globally, prostate cancer represents the second most prevalent cancer in men. With the age, most men will develop prostate cancer. However, prostate tumors are life threatening only if they escape from the prostate itself and start to spread to other tissues. Therefore, considerable efforts have been made to discover tumors earlier at more curable stages as well as to target aggressive metastatic cancers that have already invaded other tissues and become resistant to the standard treatment. Since patients undergoing a conventional therapy (a combination of chemotherapy and surgery) suffer from severe side effects, more effective ways of treatment are being searched for. Novel approaches include selective...

Page generated in 0.1064 seconds