• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 308
  • 59
  • 44
  • 43
  • 16
  • 14
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 643
  • 643
  • 223
  • 153
  • 103
  • 96
  • 72
  • 72
  • 68
  • 65
  • 60
  • 56
  • 55
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The role of protein kinase C isotypes in the proliferation and differentiation of human leukemia cells

Murray, Nicole Renee January 1995 (has links)
No description available.
62

Molecular Correlates of Adaptation and Apoptosis: p38 Signaling in Hippocampus

Niswander, Julie M. 27 May 2004 (has links)
No description available.
63

Characterization of the Beta-2 Adrenergic Receptor Mechanism in Bovine Neutrophils, and Some Effects of Inflammatory Stimuli on its Function

LaBranche, Timothy Paul 27 April 2005 (has links)
The bovine polymorphonuclear leukocyte (neutrophil) is a central component of the acute inflammatory response, and is capable of reacting to a myriad of pro-inflammatory chemical signals that have been characterized in the context of bovine respiratory disease (BRD). Human neutrophils and bovine macrophages are known to react to pro-inflammatory signals as well; however, they are also capable of responding to anti-inflammatory signals from the autonomic nervous system. In particular, activation of the beta2-adrenergic receptor on these cells decreases several aspects of inflammatory activity, including reactive oxygen species production, chemotaxis, degranulation, and inflammatory mediator production. Dysfunction of beta-adrenergic receptors is known to contribute to the pathophysiology of numerous diseases in both people and animals. For example, congestive heart failure, asthma, cystic fibrosis, atopic dermatitis, pheochromocytoma, myasthenia gravis, hypertension, and sepsis have all been linked to decreased beta1- / beta2-adrenergic receptor density (depending on the cell type) and / or uncoupling of the respective receptor from its effector enzyme, adenylyl cyclase. Dysfunction of the beta2-adrenergic receptor mechanism has also been described in pulmonary airway and vascular smooth muscle tissue from cattle, sheep, and rats exposed to Manheimia haemolytica, which provides insight into the pathophysiology of BRD. Despite the prominent role of the bovine neutrophil in the acute inflammatory stage of BRD, and despite the potential for dysfunction following excessive exposure to inflammatory stimuli, there are no reports that describe the presence of the beta2-adrenergic receptor on bovine neutrophils, nor function of the components responsible for its signal transduction cascade. Without complimentary work with bovine neutrophils, using data from human neutrophils to examine treatment options for the acute inflammatory stage of BRD is unrealistic. For this reason, the present dissertation proposed that 1) bovine neutrophils possess the beta2-adrenergic receptor mechanism, 2) components of the beta2-adrenergic receptor mechanism work in concert to increase bovine neutrophil adenosine 3,5-cyclic monophosphate (cAMP) levels and suppress superoxide anion production, and 3) the beta2-adrenergic receptor mechanism is dysfunctional following exposure to inflammatory stimuli. Using the nonselective beta1- / beta2-adrenergic receptor antagonist [3H]CGP-12177 we observed a maximum specific binding density (Bmax) value of 0.19 fmol per 100,000 bovine neutrophils. Although this value is approximately equal to what we observed with dairy cow neutrophils, human neutrophil Bmax values with this radioligand are anywhere from five to ten-fold greater, which suggests a significant species difference. We further defined the adrenergic receptor population on bovine neutrophils to be dominated by the beta2-subtype. Next, we characterized the function of beta2-adrenergic receptors by stimulating cAMP production with the beta2-adrenergic receptor agonist, terbutaline. The role of the beta2-subtype was confirmed when the terbutaline-mediated effect was negated by ICI-118,551, a beta2-adrenergic receptor antagonist. Also, the role of the phosphodiesterase enzyme in cAMP recycling in bovine neutrophils was illustrated, as the terbutaline-mediated rise in cAMP concentration was dependent upon phosphodiesterase inhibition by 3-isobutyl-1-methylxanthine (IBMX). This study confirms the anti-inflammatory nature of the beta2-adrenergic receptor on bovine neutrophils by demonstrating the ability of terbutaline and IBMX to decrease superoxide anion production in a dose-dependent manner. The synthetic cAMP analog, 8-bromo-cAMP also decreased superoxide anion production, but the effect was time-dependent because of its need to diffuse across the cell membrane. Moreover, IBMX exaggerated the terbutaline-mediated effect on superoxide anion production, while cAMP exaggerated the IBMX-mediated effect on superoxide anion, demonstrating that the beta2-adrenergic receptor acts in concert with adenylyl cyclase, while the phosphodiesterase enzyme functions to decrease their signal. By increasing the dose of the inflammatory stimulant opsonized zymosan eight-fold, we were able to eliminate the ability of various concentrations of terbutaline and IBMX to reduce superoxide anion production. We sought to provide a more specific demonstration of this phenomenon by activating protein kinase C (PKC) via phorbol 12-myristate 13-acetate (PMA) administration. However, preincubation with PMA actually increased terbutaline-mediated cAMP production, in a dose and time-dependent manner. At this time, we cannot explain why increasing the dose of opsonized zymosan and PMA had opposite effects on beta2-adrenergic receptor mechanism function. The answer may reside in the many reported functions of PKC isoforms. Additional studies that identify the PKC isoform repertoire in bovine neutrophils may illustrate the potential for selective inhibition, and may lead to more specific identification and treatment of beta2-adrenergic receptor mechanism dysfunction. Also, it remains to be seen how the various components of the bovine neutrophil beta2-adrenergic receptor mechanism function in-vivo during the acute inflammatory stage of BRD. / Ph. D.
64

Identification of a protein kinase substrate in Sulfolobus solfataricus P2

Redbird, Ruth Ann 04 May 2010 (has links)
Living organisms rely on many different mechanisms to adapt to changes within their environment. Protein phosphorylation and dephosphorylation events are one such way cells can communicate to generate a response to environmental changes. In the Kennelly laboratory we hope to gain insight on phosphorylation events in the domain Archaea through the study of the acidothermophilic organism Sulfolobus solfataricus. Such findings may provide answers into evolutionary relationships and facilitate an understanding of phosphate transfer via proteins in more elaborate systems where pathway disturbances can lead to disease processes. A λ-phage expression library was generated from S. solfataricus genomic DNA. The immobilized expression products were probed with a purified protein kinase, SsoPK4, and radiolabeled ATP to identify potential native substrates. A protein fragment of the ORF sso0563, the catalytic A-type ATPase subunit A (AtpA), was phosphorylated by SsoPK4. Full length and truncated forms of AtpA were overexpressed in E. coli. Additional subunits of the ATPase were also overexpressed and ATPase activity reconstituted in vitro. Phosphoamino acid analysis and MS identified the phosphorylation sites on AtpA. Several variants of AtpA were derived via site-directed mutagenesis and assayed for ATPase activity. Chemical cross-linking was employed to determine possible ATPase subunit interactions; tryptic digests of AtpA and its mutant variants were performed to examine protein folding. The phosphorylated-mimic variant of AtpA, T98D, resulted in an inactive ATPase complex as determined by ATPase activity assays and native-PAGE indicating potential phosphoregulation by SsoPK4 on enzyme activity. Ultimately, any findings would need verification with in vivo studies. / Ph. D.
65

Molecular mechanisms underlying Juvenile hormone (JH) signaling pathway

Ojani, Reyhaneh 19 May 2016 (has links)
Juvenile hormone (JH) is an important insect hormone that controls diverse biological processes in postembryonic development and adult reproduction. JH exerts its effects through the nuclear receptor Methoprene-tolerant (MET). MET is a transcription factor of the basic helix-loop-helix (bHLH)/Per-Arnt-Sim (PAS) family. In the presence of JH, MET forms a heterodimer with its DNA-binding partner Taiman (TAI). The MET-TAI complex directly binds to the regulatory regions of some JH target genes and regulates their transcription. However many questions remain unanswered regarding the JH-regulated gene expression. The work in this report aims to determine the role of protein kinase C (PKC) in JH signaling in adult mosquitoes and to find the direct target genes of Krüppel homolog 1 (Kr-h1), a zinc finger transcription factor encoded by a JH early response gene. We discovered that PKC is an essential component of a membrane-initiated JH signaling pathway. PKC was activated by JH in a phospholipase C (PLC)-dependent manner. Inhibition of PKC activity dramatically decreased the JH-induced gene expression. RNAi experiment indicated that several PKC isoforms were involved in the JH action in adult female mosquitoes. We showed that PKC modulated the transactivation activity of MET by enhancing the binding of MET and TAI to the promoters of JH target genes. Kr-h1 is rapidly upregulated by JH in newly emerged mosquitoes. RNAi-mediated depletion of AaKr-h1 caused a substantial decrease in oviposited eggs, indicating that this protein plays an essential role in mosquito reproduction. We combined chromatin immunoprecipitation (ChIP) with cloning of the generated DNA and have identified chromatin binding sites of AaKr-h1 in Aedes aegypti. After adult emergence, binding of AaKr-h1 to its in vivo targets increased with the JH-induced increase in AaKr-h1. Interestingly, depletion of AaKr-h1 in newly emerged mosquitoes led to considerable upregulation of some AaKr-h1 target genes but downregulation of other target genes. The results suggest that AaKr-h1 acts downstream of AaMET to regulate gene expression in response to JH and that AaKr-h1 can activate or repress the expression of individual target gene. / Ph. D.
66

Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation

Mancini, S.J., White, A.D., Bijland, S., Rutherford, C., Graham, D., Richter, E.A., Viollet, B., Touyz, R.M., Palmer, Timothy M., Salt, I.P. 11 November 2016 (has links)
Yes / Inflammation of adipose tissue in obesity is associated with increased IL-1β, IL-6 and TNF-α secretion and proposed to contribute to insulin resistance. AMP-activated protein kinase (AMPK) regulates nutrient metabolism and is reported to have anti-inflammatory actions in adipose tissue, yet the mechanisms underlying this remain poorly characterised. The effect of AMPK activation on cytokine-stimulated proinflammatory signalling was therefore assessed in cultured adipocytes. AMPK activation inhibited IL-1β-stimulated CXCL10 secretion, associated with reduced interleukin-1 receptor associated kinase-4 (IRAK4) phosphorylation and downregulated MKK4/JNK and IKK/IκB/NFκB signalling. AMPK activation inhibited TNF-α-stimulated IKK/IκB/NFκB signalling but had no effect on JNK phosphorylation. The JAK/STAT3 pathway was also suppressed by AMPK after IL-6 stimulation and during adipogenesis. Adipose tissue from AMPKα1−/− mice exhibited increased JNK and STAT3 phosphorylation, supporting suppression of these distinct proinflammatory pathways by AMPK in vivo. The inhibition of multiple pro-inflammatory signalling pathways by AMPK may underlie the reported beneficial effects of AMPK activation in adipose tissue. / British Heart Foundation
67

Identification of the Role of Protein Kinases in VLDL Trafficking

Tasin, Fahim Rejanur 01 January 2024 (has links) (PDF)
The liver maintains lipid homeostasis in the body by uptake, synthesis and delivery of lipid molecules. An important component is very low-density lipoprotein (VLDL) which is by hepatocytes. The significance of this molecule lies in the fact that abnormal VLDL metabolism may lead to NAFLD, fibrotic liver, or atherosclerotic heart diseases in humans. Intracellular VLDL transport tightly regulates its secretion from the liver. Our prior research studies have demonstrated that this transport process relies on ATP, GTP, and the presence of cytosolic proteins, suggesting the involvement of protein phosphorylation. To delve deeper into the mechanisms governing VLDL secretion, our laboratory has initiated a study aimed at identifying the role of specific protein kinases responsible for VLDL phosphorylation and subsequent secretion in human hepatoma cells. Utilizing various small molecule inhibitors, such as H89 dihydrochloride, Akti-1/2 and Calphostin C targeting Protein Kinase A, B, and C, respectively, we employed a pulse-chase assay supplemented with radioactive 3H-oleic acid-based Scintillation Counting and Western Blot analyses to identify the VLDL secretion. Findings from Western Blot analysis of VLDL protein-ApoB100 levels in the cell culture media, revealing a significant reduction in ApoB100 secretion from hepatocytes upon inhibition of the protein kinase C family. The distribution of intracellular VLDL molecules have also been shown to be higher in protein kinase C inhibition indicating lower secretion with the treatment. Furthermore, the pulse chase assay followed by immunocytochemistry-based imaging led to the finding that both ER to Golgi and post-Golgi trafficking is disturbed with the inhibition of protein kinase C. This study provides valuable insights into the intricate mechanisms underlying VLDL secretion from the liver, shedding light on the pivotal role of specific protein kinases in this process.
68

Determining the effects of phosphorylation on AFAP-110 function

Cherezova, Lidia Nikolayevna. January 2002 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains v, 105 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
69

Mechanisms of shear stress-mediated ERK1/2 modulating signal transduction pathways in endothelial cells /

Traub, Oren. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [133]-143).
70

PKCalpha direct cSrc activation and podosome formation through the adaptor protein AFAP-110

Gatesman Ammer, Amanda, January 2004 (has links)
Thesis (Ph. D.)--West Virginia University, 2004 / Title from document title page. Document formatted into pages; contains vii, 350 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 322-346).

Page generated in 0.0364 seconds