Spelling suggestions: "subject:"proteinkinase"" "subject:"proteinoquinase""
71 |
AFAP-110 is a cSrc activatorBaisden, Joseph M., January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains v, 149 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
|
72 |
Signaling pathways in myocyte hypertrophy:role of GATA4, mitogen-activated protein kinases and protein kinase CKerkelä, R. (Risto) 11 April 2003 (has links)
Abstract
Cardiac myocytes react to increased workload and hypertrophic neurohumoral stimuli by increasing protein synthesis, reinitiating expression of fetal forms of structural genes, α-skeletal actin (α-SkA) and β-myosin heavy chain (β-MHC), and by increasing expression and secretion of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP). Initially, the response is beneficial, but when prolonged, it leads to pathological cardiomyocyte hypertrophy. In this study, cardiomyocyte hypertrophy was initiated by hypertrophic agonists, endothelin-1 (ET-1) and phenylephrine (PE), and by increased stretching of atrial wall.
Transcription factor GATA4 was studied to identify the mechanism leading to increased gene expression of BNP. In BNP promoter, GATA4 binds to cis elements mediating hypertrophic response. Eliminating GATA4 binding by using the decoy approach, basal BNP gene expression was reduced. To identify mechanisms regulating GATA4, the roles of mitogen-activated protein kinases (MAPKs) were studied. Activation of p38 MAPK increased GATA4 binding to BNP gene and led to increased GATA4 dependent BNP gene expression. p38 MAPK was required for ET-1 induced GATA4 binding, whereas extracellular signal-regulated kinase (ERK) was required for maintaining basal GATA4 binding activity. PE and ET-1 activated protein kinase C (PKC) signaling in cardiac myocytes. Antisense oligonucleotide inhibition of PKCα markedly reduced PE induced ANP secretion and ET-1 induced BNP secretion, whereas gene expression of natriuretic peptides was not affected. Antisense PKCα treatment inhibited PE induced expression of α-SkA, while increased protein synthesis or β-MHC gene expression were not affected. Sretching of the perfused rat atria increased BNP, c-fos and BNP gene expression via mechanism involving p38 MAP kinase activation of transcription factor Elk-1. In cultured neonatal rat atrial myocytes stretch induced BNP gene expression was dependent upon transcription factor Elk-1 binding sites within the BNP gene promoter.
In conclusion, hypertrophic signaling in cardiac myocytes involves multiple signaling cascades. Activation of p38 MAPK is required for the development of ET-1 induced hypertrophic phenotype and GATA4 mediated BNP gene expression in cultured ventricular myocytes, and for stretch induced Elk-1 dependent BNP gene expression in atrial myocytes. PKCα is involved in PE induced hypertrophic response and PE induced switch in gene programming inducing expression of α-SkA, the fetal form of cardiac α-actin.
|
73 |
Inhibition of AMPK via phosphorylation at Ser485/491: multiple mechanisms of regulationCoughlan, Kimberly A. 03 November 2015 (has links)
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated when cellular energy is low and causes muscle and other cells to increase glucose uptake and fat oxidation, diminish lipid synthesis, and alter expression of various genes. AMPK activity is diminished in animals with the metabolic syndrome, though the mechanisms causing this reduction are unknown. To examine nutrient-induced changes in AMPK activity over time and factors that may regulate it, we compared rat muscle incubated with high glucose (HG) (30min-2h) and muscle of glucose-infused rats (3-8h) with appropriate controls. In addition to diminished AMPK activity (measured by the SAMS peptide assay) and phosphorylation of its activation loop at Thr172, we observed increased muscle glycogen, phosphorylation of AMPK’s α1/α2 subunit at Ser485/491, and PP2A activity, and decreased SIRT1 expression, all of which have been shown to diminish AMPK activity. Dysregulation of one or more of these factors could contribute to pathophysiological changes leading to metabolic syndrome associated disorders.
Since recent studies suggest phosphorylation at Ser485/491 may play an important role in AMPK inhibition, we sought to determine how phosphorylation of this site is regulated. We investigated whether insulin or diacylglycerol (DAG) signaling pathways may be involved, since both are increased in at least one of the HG models. Akt and Protein Kinase (PK)D1 phosphorylated AMPK at Ser485/491 and diminished its activity in C2C12 myotubes, downstream of insulin and the DAG-mimetic PMA, respectively. Additionally, p-AMPK Ser485/491 was increased in muscle and liver of fed versus fasted mice and liver of diabetic mice. Our results suggest that Akt- and PKD1-mediated inhibition of AMPK via Ser485/491 phosphorylation may inhibit energy-metabolizing processes, while favoring energy-storing processes. Our results highlight the fact that phosphorylation of Ser485/491 can inhibit AMPK activity independent of changes in p-AMPK Thr172, a measure which is often used as a readout of AMPK activity. We hypothesize that Akt-mediated inhibition of AMPK is an acute, physiological response to insulin, whereas PKD1-mediated inhibition may be associated with more chronic pathophysiological changes. Thus, PKD1 inhibition or prevention of Ser485/491 phosphorylation may represent new strategies for therapeutic AMPK activation as treatment for the metabolic syndrome.
|
74 |
Preclinical studies of roscovitine /Vita, Marina, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 5 uppsatser.
|
75 |
Development of a Three-Hybrid Split-Luciferase System for Interrogating Protein Kinase InhibitionJester, Benjamin January 2011 (has links)
Eukaryotic protein kinases are one of the most important classes of human proteins, and a great deal of research has focused on the development of small molecule inhibitors as biological probes for the determination of their cellular function or as therapeutics for the treatment of disease, such as cancer. The need for new selective inhibitors and a better understanding of the selectivities of existing small molecules is readily apparent. Towards the goal of better understanding protein kinases and the molecules that inhibit them, I have developed a split-protein-based approach for the investigation of these kinase-small molecule interactions. Employing split-firefly luciferase as a reporter domain, we engineered a three-hybrid system capable of determining kinase inhibition through competitive interactions between an active site-directed ligand and a small molecule of interest. This method measures luciferase activity as a function of ligand binding, as opposed to the more traditional assays which quantify kinase activity directly, and alleviates the laborious process of protein purification. The model kinase PKA and the promiscuous ligand staurosporine were used in an initial test case to successfully validate the general design principles of our assay. The modular nature inherent to the assay's design enabled us to adapt it to roughly 300 additional protein kinases and two different ligands. We were able to establish a protocol for rapidly ascertaining the inhibition of a kinase by a library of 80 commercially available kinase inhibitors in a 96-well, high-throughput format. This protocol was then systematically applied to the AGC group of kinases to observe patterns of inhibition across similarly related kinases. We have further shown how these results might be correlated with the sequence identity between kinases to better anticipate inhibitor promiscuity. Finally, we were able to illustrate how a kinase-centric approach could be applied to correlate alterations to the kinase domain with changes in luminescence. This has use for the interrogation of different modes of inhibition as well as in identifying the specific determinants of inhibitor binding. In total, these efforts represent the optimization of a new, general platform for determining kinase inhibitor selectivity across the kinome, and it could potentially be applied universally to the interrogation of protein-ligand interactions.
|
76 |
Insulin signalling to glycogen synthesis in cultured human muscle cellsArmstrong, Jane Louise January 2001 (has links)
No description available.
|
77 |
The effect of metformin-induced AMPK activation on adipogenesis and HIV replicationAlexandre, Kabamba Bankoledi 08 April 2008 (has links)
ABSTRACT
Metformin is the most common drug used against type 2 diabetes
mellitus. However, it was only recently shown, in human and rat
hepatocytes, that metformin-like 5-aminoimidazole-4-carboximide
ribonucleoside (AICAR), acts via activation of the AMP-activated protein
kinase (AMPK), an enzyme that plays a central role in lipid metabolism.
Although it is well known that metformin is used in the treatment of type
2 diabetes and results in significant fat loss, no study has investigated
the effects of this drug on adipocytes. In this report I studied the effects
of metformin on the formation of fat deposits in mouse 3T3-L1 preadipocytes,
as well as its effects on the activation of AMPK in these cells.
Our results suggested that metformin significantly inhibits the
transformation of pre-adipocytes into adipocytes. This is achieved via the
inhibition of intracellular lipid accumulation during adipogenesis. In
addition to its inhibition of intracellular lipid accumulation, metformin
induced a significant increase in the phosphorylation of AMPK.
It has been shown that AMPK activation with AICAR results in the
inhibition of the nuclear factor-κB (NF-κB) induced gene expression. Since
NF-κB is the key nuclear factor used by HIV-1 during the initiation of its
gene transcription, I investigated the possibility of inhibiting HIV-1
replication in U1 cells with metformin and AICAR. I observed that AICAR
and metformin inhibit HIV-1 replication in U1 cells. This inhibition wasparalleled by the accumulation of NF-κB in the cytoplasm of AICAR and
metformin treated cells, and at the same time by a significant decrease in
the concentration of this nuclear factor in the nucleus of these cells.
However, I failed to observe any phosphorylation of AMPK by metformin
and AICAR in U1 cells.
In conclusion, metformin inhibits adipogenesis in mouse adipocytes and
this inhibition is likely to take place via the activation of AMPK. AICAR and
metformin have inhibitory properties against HIV-1 replication. However,
this inhibition does not seem to be by the activation of AMPK.
|
78 |
A Proximity-Dependent Biotin Labeling Based Screen For Protein Kinase A Anchoring Proteins Within Focal Adhesion ComplexesNaughton, Hannah 01 January 2018 (has links)
Protein kinase A (PKA) regulates a diverse array of cellular activities including metabolism, differentiation, actomyosin contractility, and migration. The multifunctionality of this ubiquitous enzyme is achieved, in part, through subcellular targeting mediated by the A Kinase Anchoring Proteins (AKAP) family of proteins. AKAPs serve as scaffolding proteins that localize PKA to various cellular compartments and bring together specific targets and modulators of PKA activity.
The importance of spatially restricted PKA signaling is particularly apparent in the context of cell motility. It has been observed that both anchoring through AKAPs and the subsequent localized activation of PKA at the leading edge of migrating cells are required for directed migration in multiple cell types. Despite the significant body of evidence linking PKA to the regulation of cellular adhesion, contractility, and migration, the mechanisms governing the spatiotemporal control of PKA signaling during these activities is not fully understood. Focal adhesion complexes, which connect the actin cytoskeleton to the extracellular matrix and are thus intimately involved in the adhesive and contractile state of the cell, are attractive potential sites of PKA signaling. We have evidence indicating that PKA is active within these complexes, and that this activity impacts focal adhesion dynamics.
To address the question of how PKA may be recruited to adhesive complexes, we have developed a targeted screen to identify PKA interacting proteins within adhesive and cytoskeletal structures. This method utilizes proximity-dependent biotin labeling in combination with a focal adhesion purification preparation and downstream proteomic analysis. The results of this screen will be used to identify candidate AKAPs and will serve as the foundation for future inquiry into the complex role of PKA in the regulation of cell migration.
|
79 |
The A-Site In The Pkg Iα Regulatory Domain Controls Both Cgmp- And Oxidative-Dependent ActivationSheehe, Jessica Lynne 01 January 2018 (has links)
The type Iα cGMP-dependent protein kinase (PKG Iα) is an essential regulator of vascular tone and systemic blood pressure. Located in the smooth muscle of resistance vessels, PKG Iα stimulates vasodilation through the phosphorylation of multiple intracellular substrates. Its primary regulator is the small molecule, 3',5'-cyclic guanosine monophosphate (cGMP); however, the Iα isoform can also be activated by oxidation. Despite the established physiological importance of PKG Iα, the structural underpinnings of these two activation mechanisms are largely unknown.
The work presented in this dissertation demonstrates the importance of the cGMP-binding domain A (CBD-A) in regulating both of these mechanisms of PKG Iα activation. Using a monomeric, N-terminally truncated form of PKG Iα (Δ53), Chapter 2 investigates the mechanism of inhibition through the autoinhibitory domain and the influence of dimerization on cooperative cGMP-dependent activation and cyclic nucleotide selectivity. We observed that autoinhibition occurs in cis, whereas cooperativity requires interprotomer contacts facilitated by the N-terminal dimerization domain. Furthermore, the loss of selectivity for cGMP over cAMP of this construct suggests the dimerization domain plays a critical role in preventing cross-reactivity with cAMP-dependent signaling. These observations culminate into an overarching model wherein binding of cGMP to CBD-A is necessary and sufficient for activation and cooperativity is driven by the dimerization domain.
Chapter 3 investigates the cysteine residues that mediate oxidation-dependent activation of PKG Iα. Using PKG Iα constructs with point mutations at specific cysteine residues, it was found that oxidation-dependent activation is driven by C117 in CBD-A. Furthermore, the interprotomer disulfide bond that forms in the dimerization domain at C42 does not contribute to this mechanism. Finally, we propose a model wherein the disulfide bond that forms between C117 and the adjacent cysteine at position 195 acts as a protective mechanism to prevent activation and higher oxidation states form contacts with nearby residues in the linker region of PKG Iα to disrupt binding of the adjacent autoinhibitory domain to the catalytic domain.
Finally, Chapter 4 provides a discussion of the results presented herein in context with previous studies and suggests future directions for the PKG field.
|
80 |
Prostaglandin F ��-induced signal transduction mechanism regulating the secretion of oxytocin from the bovine corpus lutemOrwig, Kyle Edwin 23 May 1994 (has links)
Graduation date: 1995
|
Page generated in 0.0543 seconds