Spelling suggestions: "subject:"researchmethodology"" "subject:"researchmethodologyis""
1 |
New protein "nanobricks" for bio-assemblies. / CUHK electronic theses & dissertations collectionJanuary 2013 (has links)
Lu, Yao. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
2 |
mTOR regulates Aurora A via enhancing protein stabilityFan, Li 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis. Dysregulation of mTOR signaling occurs in many human cancers and its inhibition causes arrest at the G1 cell cycle stage. However, mTOR’s impact on mitosis (M-phase) is less clear. Here, suppressing mTOR activity impacted the G2-M transition and reduced levels of M-phase kinase, Aurora A. mTOR inhibitors did not affect Aurora A mRNA levels. However, translational reporter constructs showed that mRNA containing a short, simple 5’-untranslated region (UTR), rather than a complex structure, is more responsive to mTOR inhibition. mTOR inhibitors decreased Aurora A protein amount whereas blocking proteasomal degradation rescues this phenomenon, revealing that mTOR affects Aurora A protein stability. Inhibition of protein phosphatase, PP2A, a known mTOR substrate and Aurora A partner, restored mTOR-mediated Aurora A abundance. Finally, a non-phosphorylatable Aurora A mutant was more sensitive to destruction in the presence of mTOR inhibitor. These data strongly support the notion that mTOR controls Aurora A destruction by inactivating PP2A and elevating the phosphorylation level of Ser51 in the “activation-box” of Aurora A, which dictates its sensitivity to proteasomal degradation. In summary, this study
is the first to demonstrate that mTOR signaling regulates Aurora-A protein expression and stability and provides a better understanding of how mTOR regulates mitotic kinase expression and coordinates cell cycle progression. The involvement of mTOR signaling in the regulation of cell migration by its upstream activator, Rheb, was also examined. Knockdown of Rheb was found to promote F-actin reorganization and was associated with Rac1 activation and increased migration of glioma cells. Suppression of Rheb promoted platelet-derived growth factor receptor (PDGFR) expression. Pharmacological inhibition of PDGFR blocked these events. Therefore, Rheb appears to suppress tumor cell migration by inhibiting expression of growth factor receptors that in turn drive Rac1-mediate actin polymerization.
|
3 |
Sphingosine 1-phosphate enhances excitability of sensory neurons through sphingosine 1-phosphate receptors 1 and/or 3Li, Chao January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that has proven to be an important signaling molecule both as an extracellular primary messenger and as an intracellular second messenger. Extracellular S1P acts through a family of five S1P receptors, S1PR1-5, all of which are G protein-coupled receptors associated with different G proteins. Previous work from our laboratory shows that externally applied S1P increases the excitability of small-diameter sensory neurons by enhancing the action potential firing. The increased neuronal excitability is mediated primarily, but not exclusively, through S1PR1. This raises the question as to which other S1PRs mediate the enhanced excitability in sensory neurons.
To address this question, the expression of different S1PR subtypes in small-diameter sensory neurons was examined by single-cell quantitative PCR. The results show that sensory neurons express the mRNAs for all five S1PRs, with S1PR1 mRNA level significantly greater than the other subtypes. To investigate the functional contribution of other S1PRs in augmenting excitability, sensory neurons were treated with a pool of three individual siRNAs targeted to S1PR1, R2 and R3. This treatment prevented S1P from augmenting excitability, indicating that S1PR1, R2 and/or R3 are essential in mediating S1P-induced sensitization.
To study the role of S1PR2 in S1P-induced sensitization, JTE-013, a selective antagonist at S1PR2, was used. Surprisingly, JTE-013 by itself enhanced neuronal excitability. Alternatively, sensory neurons were pretreated with FTY720, which is an agonist at S1PR1/R3/R4/R5 and presumably downregulates these receptors. FTY720 pretreatment prevented S1P from increasing neuronal excitability, suggesting that S1PR2 does not mediate the S1P-induced sensitization.
To test the hypothesis that S1PR1 and R3 mediate S1P-induced sensitization, sensory neurons were pretreated with specific antagonists for S1PR1 and R3, or with siRNAs targeted to S1PR1 and R3. Both treatments blocked the capacity of S1P to enhance neuronal excitability. Therefore my results demonstrate that the enhanced excitability produced by S1P is mediated by S1PR1 and/or S1PR3.
Additionally, my results indicate that S1P/S1PR1 elevates neuronal excitability through the activation of mitogen-activated protein kinase kinase. The data from antagonism at S1PR1 to regulate neuronal excitability provides insight into the importance of S1P/S1PR1 axis in modulating pain signal transduction.
|
Page generated in 0.0417 seconds