• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A STUDY OF THE EFFECT OF SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN GENOME ON THE SECONDARY STRUCTURE OF PROTEINS

Aswathanarayanan, Subramanian 21 June 2002 (has links)
No description available.
2

Prediction Of Separation Factor In Foam Separation Of Proteins

Bhattacharjee, Samita 08 1900 (has links)
Polyhedral foams offer large gas-liquid interfacial area associated with a small amount of liquid. Therefore, if a solute adsorbs preferentially at the interface, the concentration of the solute in the foam will be greater than in the solution from which the foam has been generated. This effect provides a simple method of concentrating materials which have a tendency to adsorb on the gas-liquid interface. This is particularly relevant to biomaterials like whole cells, proteins, enzymes etc., which are surface active and are present in low concentrations in the broth. Foam separation has therefore attracted considerable attention, and several reports exist in literature on concentrating cells, proteins and enzymes using foams. Foam separation is based on the difference in surface activity of the components to be separated. A surface active molecule consists of a lyophobic and a lyophilic group. (As water is commonly used as a solvent, the lyophilic and lyophobic groups are called hydrophilic and hydrophobic groups, respectively). When dissolved in a solvent, the presence of lyophobic groups in the interior of the solvent distorts the solvent liquid structure, thereby increasing the free energy of the system.
3

Nonstructural Protein, NSs Encoded By Groundnut Bud Necrosis Virus (Tomato) Is A Multifunctional Enzyme

Bhushan, Lokesh 07 1900 (has links) (PDF)
1 Viruses are submicroscopic obligate parasites that depend on the host cell for their growth and reproduction. Plants are infected by diverse group of viruses that mostly possess RNA as their genome. In the recent times, many new RNA viruses have evolved that possess the potential threat to plants and animals. One among them is Tospovirus (Family Bunyaviridae) which has severely affected the agricultural productivity in India. One of the Tospoviruses GBNV is a major challenge of crop production in south India. Tospoviruses shares several features such as morphology, genome structure and organization with members of other genera in the family Bunyaviridae. Virus particles are 80–120 nm in diameter. The genome includes three RNAs referred to as large (L), medium (M) and small (S). The L RNA is in negative-sense while the M and S RNAs are ambisense. The L RNA codes for the RNA-dependent RNA polymerase (RdRp), and the M RNA for the precursor of two glycoproteins (GN and GC) and a non-structural protein (NSm). The S RNA codes for the N protein and another non-structural protein (NSs). Tospovirus infection is an emerging threat for agricultural productivity in India. Therefore, biochemical and molecular characterization of these viruses is essential for developing various strategies for control of these diseases. 2 Present thesis deals with biochemical characterization of nonstructural protein, NSs of GBNV. 3 A review of literature on Tospovirus genome organization, replication, transcription, translation and assembly is presented in Chapter I. This chapter also includes the recent work on all the proteins encoded by the tospoviruses. 4 The objectives of the present study are as follows; a. Cloning, expression, purification and biophysical characterizations of rNSs. b. Analysis of its NTPase/dATPase activity c. Demonstration of nucleic acid 5’ phosphatase activity d. Characterization of nucleic acid unwinding activity of rNSs 5 The materials used in this study and the experimental protocols followed such as construction of recombinant clones, their overexpression in bacteria, protein purification techniques, site directed mutagenesis and all other biochemical, molecular biology are described in chapter II 6 NSs of TSWV was shown to be suppressor of gene silencing (PTGS) in 2002. Since then there has been no further work on this protein. Till date neither in vitro nor in vivo study of NSs of any tospovirus has been carried out in detail. To gain insight into the biochemical function of rNSs, the NSS gene was cloned, overexpressed in E.coli and purified. The NSS gene, was cloned into pRSET-C vector. 7. Chapter 3 deals with cloning, overexpression, purification and biophysical characterization of GBNV NSs in terms of secondary structure analysis as well as its interaction with siRNA and ssRNA. The results provide the evidence that rNSs was successfully expressed in E.coli and purified (Fig. 3.1). Molecular mass of purified rNSs was confirmed by MALDI TOF, which gave the molecular mass of expected size 51.5 kDa (Fig. 3.2) Circular dichroism study revealed that rNSs has negative ellipticity peak at 215 and 223 nm typical of a globular protein. The protein had an emission maximum at 340 nm (Fig 3.3 B) when exited at 280 nm, which reflects that rNSs is well folded. Thermal melting study (Fig 3.3 C) showed rNSs had a reasonably high Tm (65°C). So overall, spectral study suggested that purified rNSs was soluble, well folded and thermally stable and could be used for further biochemical assay. The oligomeric status of the protein was determined by size exclusion chromatography to be trimeric (156 kDa, Fig 3.5). Purified rNSs was used to raise the polyclonal antibodies in rabbit. The antiserum could detect rNSs specific band only in IPTG induced sample not in uninduced sample (Fig 3.6). 50% binding was observed at 100 ng/ml of antigen showing that these antibodies were of high affinity (Fig 3.7 B). Further, the 50% binding was observed at 1:34000 dilution of the antiserum, which suggests that high titer antibodies against rNSs were obtained (Fig 3.7 A). 8 Further, the RNA binding property of rNSs was examined. Synthetic 21 bp siRNA and in vitro transcribed 100 nt ssRNA was used to analyze the RNA binding property of rNSs. Indeed rNSs was able to bind with 100 nt ssRNA (Fig 3.8 A) or 21 nt siRNA in a protein concentration dependent manner (Fig 3.8 B). The binding however did not require presence of divalent cation such as Mg 2+ (Fig 3.8 C). In order to understand the biological function of rNSs, its interaction with the structural protein, NP by ELISA was investigated. rNSs could interact with the NP protein (Fig 3.9) . Further 15 amino deletions from C terminus of NP did not affect its interaction with rNSs protein (Fig 3.9), which suggest that the C terminal 15 amino acid residues of NP are not essential for interaction with rNSs in vitro. 9. Sequence analysis of GBNV NSs revealed the presence of Walker motifs A (GxxxxGKT) and B (DExx) in its primary structure (Fig 4.2). The proteins that possess the Walker motifs A and B exhibit ATPase activity. Therefore, the purified rNSs was tested for its ability to hydrolyze ATP in the absence and presence of poly(A) (chapter IV). rNSs could hydrolyze [γ-32P] ATP in a concentration-dependent manner (Fig. 4.3 A). Further, ATPase activity was stimulated in presence of poly(A) (Fig. 4.3 B). Quantitative analysis of reaction product suggested that the reaction was linear in the presence of poly(A) upto 1.6 µg of rNSs (Fig. 4.3 C). 10. The product of ATP hydrolysis by rNSs had the same mobility as the phosphate released by RecoP51 ATPase, a positive control used in the assay. In contrast, another viral protein from the Cotton leaf curl virus, His tagged-AV2, purified in same way as rNSs, did not show the release of phosphate, suggesting that the activity was not due to the histidine tag present at the N-terminus of rNSs. Further, no release of phosphate could be seen when immunodepleted rNSs was used suggesting that the activity was inherent to the protein and was not due to bacterial contamination (Fig 4.3 lane 7). Time course analysis of ATPase activity revealed that the reaction is linear up to 25 mins (Fig 4.4). Further, pH profile was a typical bell shaped curve with a distinct pH optimum at pH 7.0 (Fig 4.5 A) and the temperature optimum was at 25 °C(Fig 4.5 B). Most of the known viral ATPases require the divalent cation for their activity. The rNSs exhibited the optimum ATPase activity between 2-2.5 mM of MgCl2. The reaction was inhibited by increasing concentration of EDTA demonstrating the requirement of Mg2+ for ATP hydrolysis (Fig. 4.7). Further, the ATPase activity of rNSs was inhibited by increasing concentrations of non-hydrolyzable analog of ATP (Fig. 4.8) and was not inhibited by AMP (Fig 4.9) suggesting that rNSs is not a nucleotidyl phosphatase and is a true ATPase. Limited proteolysis of rNSs suggested that core domain was 23 kDa in size and could catalyze ATP hydrolysis (Fig. 21 and 4.22). 11. Interestingly rNSs not only cleaved ATP rather it could hydrolyze all rNTPs as well as dATP (Fig 4.10). Kinetic parameters were determined for its enzymatic activity. Comparison of the kinetic constants of rNSs NTPase activity revealed little variation, suggesting that the rNSs has a broad substrate specificity (Fig 4.10- 4.15 and table 4.1). 12. To assess the role of amino acids in Walker motif A and B (Fig. 4.16) site specific mutants K189A and D159A were generated ( Fig 4.17) confirmed by sequencing, overexpressed in E.coli and purified (Fig. 4.18). Point mutation in Walker motif B (D159A) reduced the ATPase activity (Fig 4.19) where as point mutation in Walker motif A (K189A abolishes the activity (Fig 4.19). 13. Chapter V deals with the nucleic acid 5’ phosphatase activity of rNSs. Experimental evidence presented in this chapter clearly shows that rNSs can cleave the single phosphate from the ssDNA, ssRNA, dsRNA and dsDNA. Nucleic acid 5’ phosphatase activity of rNSs was inhibited by AMP and ATP (Fig 5.2 and Fig 5.3). Interestingly the K189A mutant rNSs was as active as wild type rNSs where as D159A mutant showed slightly reduced activity (Fig 5.7 C). 14. As mentioned earlier, rNSs was shown to possesses the RNA stimulated NTPase/dATPase activity, a hallmark of all known helicases. Therefore, its nucleic acid unwinding activity was examined using dsDNA and dsRNA as a substrate. rNSs was able to unwind the dsDNA as well as dsRNA in a ATP dependent manner (chapter VI, Fig. 6.1 and 6.5 respectively). ATP and Mg2+ are essential cofactors for the unwinding activity (Fig. 6.1). While the unwinding activity could be observed with ATP and to some extent with dATP, all other NTPs and dNTPs failed to support the helicase function of rNSs (Fig 6.2) Further experimental evidence suggested that rNSs is a bidirectional helicase (Fig. 6.3). D159A mutation in Walker motif B resulted in reduced helicase activity where as K189A mutation in walker Motif A completely abolished the DNA as well as RNA helicase activity of rNSs (Fig. 6.6 and Fig 6.7 respectively). Therefore, mutational analysis clearly suggests that helicase activity is an intrinsic property of rNSs. 15. In conclusion rNSs of GBNV is multifunctional enzyme. This is the first report on the demonstration that rNSs is an non canonical ATP dependent helicase in the Bunyaviridae family. In addition to being a suppressor of PTGS, NSs may also regulate the viral replication and transcription by modulating the secondary structure of the viral genome. This new research finding on NSs might pave way for further studies on its role in viral replication and transcription.
4

Stereochemical Analysis On Protein Structures - Lessons For Design, Engineering And Prediction

Gunasekaran, K 12 1900 (has links) (PDF)
No description available.
5

Extraction of High-Value Minor Proteins from Milk

Billakanti, Jaganmohan January 2009 (has links)
Various methods for extraction and analysis of high value minor proteins (lactoferrin, lactoperoxidase and immunoglobulins) directly from raw milk were explored. Extraction, purification and analysis of high-value minor proteins directly from milk without pre-treatment are major challenges for dairy industry, largely due to the complexity of milk and the presence of colloidal solids (casein micelles and milk fat globules). To overcome some of these challenges, this work focused on three main objectives: 1) characterization of cryogel monolith chromatography for purification of lactoferrin (LF) and lactoperoxidase (LP) directly from raw milk in single step, 2) identification and characterization of Protein A Mimetic affinity ligands for purification of immunoglobulins (Igs) from milk and 3) development and validation of a surface plasmon resonance method for simultaneous quantification of five whey proteins in multiple samples. Results portrayed the possibility of 40–50 column volumes of various milk samples (whole milk, skim milk and acid whey) to pass through a 5 mL cryogel monolith chromatography column at 525 cm hr⁻¹ without exceeding its pressure limits if the processing temperature is maintained around 35–37°C. Ideally, this should be the milk secretion temperature. The dynamic binding capacity obtained for the cryogel matrix (2.1 mg mL⁻¹) was similar to that of the binding capacity (2.01 mg mL⁻¹) at equilibrium with 0.1 mg mL⁻¹ of lactoferrin in the feed samples. Lactoferrin and lactoperoxidase was selectively bound to the cryogel column with trivial leakage in flowthrough fractions. Lactoferrin was recovered from elution fractions with a yield of 85% and a purity of 90%. These results, together with the ease of manufacture, low cost and versatile surface chemistry of cryogels suggest that they may be a good alternative to packed-bed chromatography for direct capture of proteins from milk, provided that the binding capacity can be increased. A Protein A Mimetic (PAM) hexapeptide (HWRGWV) peptide ligand that binds to the Fc portion of antibody molecules was explored for affinity purification of immunoglobulins from milk. The peptide has the ability to purify IgG from various milk and whey samples with a purity of greater than 85% in single step. More than 90% bound IgG was recovered with 0.2 M acetate buffer at pH 4.0 and total column regeneration was successfully achieved by 2.0 M guanidine-HCl. At 9.0 mg mL⁻¹ of IgG feed concentration, an equilibrium binding capacity of 21.7 mg mL⁻¹ and dynamic binding capacity of approximately 12.0 mg mL⁻¹ of resin was obtained. Recoveries and yields of IgG were significantly influenced by the feed IgG concentration. PAM hexamer ligand also contributed a significant amount of cross-reactivity with casein, glycomacropeptides and β-lactoglobulin proteins, however majority of these proteins were recovered in the regeneration step, except β-lactoglobulin, which co-eluted with IgG. Higher IgG concentration in feed vastly reduced the amount of cross-reactivity whilst increasing the recoveries and purities in the final product. PAM affinity ligands also showed interactions towards other classes of bovine immunoglobulins. These findings established the possibility of using PAM hexamer peptide as an alternative to conventional Protein A/G affinity chromatography for the isolation of Igs from milk in single step process. A surface plasmon resonance (SPR) method was developed for simultaneous, quantitative determination of commercially important whey proteins in raw and processed milk samples, whey fractions and various milk-derived products, with six samples per assay. Immobilized antibody stability and reproducibility of analyses were studied over time for 25 independent runs (n=300), giving a relative standard deviation (RSD) of <4%. Immobilized antibodies showed negligible non-specific interactions (<2–4 SPR response units (RU)) and no cross-reactivity towards other milk components (<1 RU). Regeneration of immobilised antibodies with glycine at pH 1.75 was determined to be optimal for maintaining the SPR response between samples. This method compared and validated well with reversed phase high performance liquid chromatography (RP-HPLC) and standard enzyme-linked immunosorbent assays (ELISA).
6

Up Regulation of Heat Shock Protein 70B (HSP70B) and <em>SSA1</em> in <em>Chlamydomonas Reinhardtii</em> via HSP70A-RBCS2 and PSAD Promoter

Amos, B. Kirtley 01 January 2015 (has links)
Fabrication of effective algae cultivation systems adjacent to coal-fired power plants to fixate waste CO2 would represent a sizable step towards achieving a carbon neutral energy cycle. However, emission gas would elevate the algal cultivation system temperature and decreases its pH without expensive preprocessing. Increased temperature and acidity constitutes a profound stress on the algae. Although stressed algae produce heat shock proteins (HSPs) that promote protein folding and protect against stress, the ordinary biological response is insufficient to protect against coal flue gas. Experimental upregulation of HSPs could make algae respond to the stress caused by high temperatures and low pH at an elevated level. However, no work has been done to determine whether HSPs can be experimentally upregulated in algae. Here, the Chlamydomonas reinhardtii algal strain was selected because it has a sequenced genome and singular cell structure ideal for genetic modifications. Two genetic modification methods: transformation with plasmids pCB720/pCB740, and cloned pchlamiRNA3/pchlamiRNA3int with yeast HSP gene SSA1 were evaluated. pCB720/pCB740 up regulate algae production of native HSP, HSP70B. pCB720 transformation success was observed but statistically, data varied. pchlamiRNA3/pchlamiRNA3int were cloned with SSA1. Chlorophyll content measured growth indirectly. Quantitative HSP detection could be done using RT-PCR.
7

Structural and Functional Analysis of Proteins involved in Microbial Stress Tolerance and Virulence

Bangera, Mamata January 2015 (has links) (PDF)
The genus Salmonella consists of pathogenic gram negative organisms which infect intestines of birds, animals and humans. They are the causative agents of salmonellosis which is characterised by diarrhoea, nausea, fever and abdominal cramps. If not treated in time, salmonellosis can also be fatal. Salmonella genus is divided into two species Salmonella bongori and Salmonella enterica. Salmonella enterica is further divided into six subspecies out of which the subspecies enterica has many of the pathogenic serovars of this species. Salmonella typhimurium is a server in the subspecies enterica of Salmonella enterica species. Transmission of salmonellosis takes place through contaminated food and water. When the organism enters a host, it encounters a range of hostile environments such as acidic pH, lack of oxygen as well as immune response of the host. In order to establish infection, the bacterium needs to survive under stressful conditions and propagate itself. Various proteins are induced in cells under unfavourable conditions that protect them in such situations. One such group of proteins belongs to the Universal Stress Protein (USP) family. Universal Stress Proteins are a set of proteins induced in organisms when it is exposed to a variety of environmental insults including heat shock, nutrient starvation, presence of toxic compounds, etc. Although survival in adverse conditions is mediated by induction of this group of proteins, the precise mechanism of cellular protection has not been elucidated yet. The functional role of a protein is directly related to its three-dimensional structure and hence important insights can be gained regarding the role of these proteins by determining their structures. The structures of two Universal Stress Proteins from S. typhimurium; a single domain protein, YnaF and another tandem USP domain protein, YdaA were determined by X-ray crystallography and biochemical analysis was carried out on them. Guided by structure, plausible roles for both the proteins in stress tolerance of S. typhimurium have been proposed. Additionally, work was also carried out on phosphomannose isomerise from S. typhimurium. Phosphomannose isomerase is a housekeeping enzyme which catalyses the interconversion of mannose-6-phosphate and fructose-6-phosphate. Mannose is important for mannosylation of various lipids and proteins which form an important component of bacterial and fungal cell walls. Presence of a functional phosphomannose isomerise enzyme is important as it helps the organism survive adverse conditions by forming a strong cell wall which shields it from harmful environments. Moreover, phosphomannose isomerase was also found to be essential for virulence of Leishmania mexicana and Cryptococcus neoformans. The structure of phosphomannose isomerase from S. typhimurium was determined in our laboratory in the year 2009. However, in the earlier studies, the catalytically important residues had not been identified and mechanism of isomerisation was not established. Structural analysis, site directed mutagenesis and biochemical assays were used to identify key residues in the active site of StPMI. Identification of these residues might help in deciphering the catalytic mechanism which will eventually be useful to develop inhibitors that arrest the growth of Salmonella as well as other microorganisms. The work reported in this thesis describes the efforts made to enhance our understanding of functional aspects of the two Universal Stress Proteins, YnaF and YdaA and phosphomannose isomerase from S. typhimurium. Chapter 1 begins with a brief introduction to the kinds of unfavourable environments encountered by microorganisms and their strategies of adaptation. This is followed by a review of the literature on Universal Stress Proteins, which are induced in many organisms in response to arrest of or perturbations in the growth rate. Structural, biochemical and evolutionary aspects of members of the family have also been discussed. Subsequently, a brief description of the earlier work carried out on another enzyme important in stress tolerance, phosphomannose isomerase, has been documented. A detailed account of mechanisms of isomerisation carried out by aldose ketose isomerases and identification of important strategies for determination of mechanism of phosphomannose isomerase catalysed reaction have then been provided. The chapter ends with a summary of aims and objectives of the present work. Chapter 2 describes the various experimental techniques and computational methods used during the course of this thesis work. Isolation of plasmids, overexpression and purification of protein, site directed mutagenesis, biochemical assays, crystallisation of proteins, X ray diffraction data collection form a part of the experimental aspect and have been described in detail. Brief descriptions of the programs used and principles behind computational methods used for structure determination (including data processing, phasing, model building and refinement), validation and analysis have also been provided. Chapter 3 includes the structural and functional studies carried out on YdaA, a tandem USP domain protein from S. typhimurium. Expression, purification, crystallisation and structure determination of YdaA in its native and ADP bound forms are described in the chapter. Biochemical assays with radiolabelled ATP showed that YdaA was an ATPase. The crystal structure of YdaA complexed with ATP revealed the presence of ADP (hydrolysis product of ATP) only in the C-terminal domain of the protein. Based on structural analysis and presence of ATP binding motif in the C-terminal domain, it could be hypothesized that ATP hydrolysis activity of the protein is confined to the C-terminal domain of the protein. The N-terminal domain of the protein was found to play another interesting role. A zinc binding site could be identified in the N terminal domain based on structural analysis and elemental X-ray absorption studies done at the synchrotron. Site directed mutagenesis and biochemical experiments suggested that zinc binding in the N-terminal domain was not related to ATPase activity of the C-terminal domain. Additionally, an intermediate of lipid A biosynthesis pathway UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetyl glucosamine was found bound to the N-terminal domain of YdaA. Lipid A is the membrane anchor of polysaccharides in the outer membrane of gram negative organisms and the intermediate occurs at the committed step of the pathway. However, no similarities could be identified between YdaA and members of the relevant biosynthetic pathway. Therefore, YdaA is unlikely to play a catalytic role in the same pathway but can function as a carrier molecule. A plausible link between the N- and C-terminal domains of YdaA could be identified by structural analysis. Many catalytically suitable residues from the N-terminal domain were found to be close to the β-phosphate of ADP bound to the C-terminal domain. Hence YdaA was identified to be a zinc binding ATPase which might play some yet unidentified role in lipid A biosynthesis pathway. Chapter 4 describes the attempts made towards understanding the functional role of YnaF, a single domain USP from S. typhimurium. A description of the expression, purification, crystallisation and X ray diffraction techniques used for structure determination of YnaF and its single site mutant have been provided in detail. Gel filtration, dynamic light scattering studies and the crystal structure determination of YnaF showed a tetrameric organisation of four USP protomers stabilised in the centre by chloride ions. Additionally, YnaF crystallised with a bound ATP even though ATP was not included in the crystallisation cocktail. Biochemical assays on YnaF with radiolabelled ATP showed that it was inactive with respect to ATP hydrolysis. When selected mutations that disrupt chloride binding were made, YnaF was converted to an active ATPase. The crystal structure of the mutant complexed with an ATP analogue revealed key differences at the active site in comparison with that of the wild type and allowed identification of residues that might be important for ATP hydrolysis in this group of proteins. Hence YnaF might play the role of a sensor protein in some signal transduction pathway involving chloride ions in bacteria. A structure based analysis and comparison of USPs from the Protein Data Bank with the structures of YnaF and YdaA is summarised at the end of this chapter. Chapter 5 describes the efforts carried out towards determination of mechanism of isomerisation catalysed by phosphomannose isomerise (PMI). Earlier reports suggest that the enzyme catalyses the reversible isomerisation of mannose-6-phosphate and fructose-6-phosphate via formation of a cis-enediol intermediate. The structure of phosphomannose isomerase from S. typhimurium has been reported by our laboratory. The enzyme is a monomer with three domains; a catalytic domain, a carboxy terminal domain and an α-helical domain. Residues from the catalytic domain were found to coordinate a zinc ion. Overexpression, purification, co crystallisation experiments and soaking studies carried out on crystals of PMI and its single site mutants are outlined in this chapter. The structure of a complex of PMI with mannose-6-phosphate at pH 7.0 revealed the presence of a blob of density close to the zinc binding site which was confirmed to be the active site by analysis of conservation of residues in the site. Based on site directed mutagenesis, activity studies and analysis of structure of PMI, zinc was identified to play an important role in maintaining the structural integrity of the active site. Electrostatic surface analysis of the structure of PMI revealed that the zinc ion might also play the role of anchoring phosphate moiety of the substrate in a highly negatively charged active site pocket. Activity assays following site directed mutagenesis studies eliminated the role of Glu264 in catalysis and implicated two lysines, Lys86 and Lys132 as the possible base in the reaction. The plausible role of a highly conserved residue Arg274 was also proposed based on comparison of structures of wild type and mutant PMIs. The future prospects of the work are briefly discussed towards the end of the thesis. Further experiments and analysis required to obtain better understanding of the functions of these proteins have been discussed. The Appendix section describes extensive crystallisation attempts that were carried out on the enzyme sorbitol-6-phosphate-dehydrogenase from S. typhimurium which catalyses the isomerisation reaction between sorbitol-6-phosphate and glucose-6-phosphate using NADPH as the cofactor. Needle shaped crystals were obtained which diffracted to a poor resolution of 7-8 Å at our in house X ray facility. Attempts to improve the quality of the crystals like co crystallisation with substrate and its analogues, soaking in various compounds and seeding are briefly described. The following manuscripts based on work described in this thesis have been published or will be communicated for publication. 1. Structural and functional analysis of two universal stress proteins YdaA and YnaF from Salmonella typhimurium: possible roles in microbial stress tolerance. Bangera M., Panigrahi R., Sagurthi S.R., Savithri H.S., Murthy M.R.N. Journal of Structural Biology, 2015 Mar; 189 (3): 238-50. 2. Structural and functional insights into phosphomannose isomerise: role of zinc and catalytic residues. Bangera M., Savithri H.S., Murthy M.R.N. Manuscript under preparation

Page generated in 0.03 seconds