• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 17
  • 8
  • Tagged with
  • 50
  • 37
  • 23
  • 20
  • 18
  • 15
  • 15
  • 15
  • 10
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chemometrie in der NMR-Spektroskopie Signalanalyse mittels neuronaler Netze /

Sielaff, Marco. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2000--Berlin.
12

Puls-NMR mit hyperpolarisierten Protonen in Metallen

Bommas, Christoph. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bonn.
13

Evaluation of 1H-NMR and GC/MS-based metabonomics for the assessment of liver and kidney toxicity / Bewertung von 1H-NMR und GC/MS-Metabonomics zur Erkennung von Leber- und Nierentoxizität

Sieber, Maximilian January 2009 (has links) (PDF)
For the assessment of metabonomics techniques for the early, non-invasive detection of toxicity, the nephrotoxins gentamicin (s.c. administration of 0, 60 and 120 mg/kg bw 2x daily for 8 days), ochratoxin A (p.o. administration of 0, 21, 70 and 210 µg/kg bw 5 days/week for 90 days) and aristolochic acid (p.o. administration of 0, 0.1, 1.0 and 10 mg/kg bw for 12 days) were administered to rats and urine samples were analyzed with 1H-NMR and GC/MS. Urine samples from the InnoMed PredTox project were analyzed as well, thereby focusing on 1H-NMR analysis and bile duct necrosis as histopathological endpoint. 1H-NMR analysis used water supression with the following protocol: 1 M phosphate buffer, D2O as shift lock reagent, D4-trimethylsilyl­propionic acid as chemical shift reference, noesygppr1d pulse sequence (Bruker). For multivariate data analysis, spectral intensity was binned into 0.04 ppm wide bins. GC/MS analysis of urine was carried out after protein precipitation with methanol, drying, derivatization with methoxyamine hydrochloride in pyridine and with methyl(trimethylsilyl)­trifluoroacetamide on a DB5-MS column using EI ionization. The chromatograms were prepared for multivariate data analysis using the R-program based peak picking and alignment software XCMS version 2.4.0. Principal component analysis (PCA) to detect and visualize time-point and dose-dependent differences between treated animals and controls and orthogonal projection to latent structures discriminant analysis (OPLS-DA) for identification of potential molecular markers of toxicity was carried out using SIMCA P+ 11.5 1H-NMR-based markers were identified and quantified with the Chenomx NMR Suite, GC/MS based markers were identified using the NIST Mass Spectral Database and by co-elution with authentic reference standards. PCA of urinary metabolite profiles was able to differentiate treated animals from controls at the same time as histopathology. An advantage over classical clinical chemistry parameters regarding sensitivity could be observed in some cases. Metabonomic analysis with GC/MS and 1H-NMR revealed alterations in the urinary profile of treated animals 1 day after start of treatment with gentamicin, correlating with changes in clinical chemistry parameters and histopathology. Decreased urinary excretion of citrate, 2-oxoglutarate, hippurate, trigonelline and 3-indoxylsulfate increased excretion of 5-oxoproline, lactate, alanine and glucose were observed. Ochratoxin A treatment caused decreased excretion of citrate, 2-oxoglutarate and hippurate and and increased excretion of glucose, myo-inositol, N,N-dimethylglycine, glycine, alanine and lactate as early as 2 weeks after start of treatment with 210µg OTA/kg bw, correlating with changes in clinical chemistry parameters and histopathology. Integration of histopathology scores increased confidence in the molecular markers discovered. Aristolochic acid treatment resulted in decreased urinary excretion of citrate, 2-oxoglutarate, hippurate and creatinine as well as increased excretion of 5-oxoproline, N,N-dimethylglycine, pseudouridine and uric acid. No alterations in clinical chemistry parameters or histopathology were noted.Decreased excretion of hippurate indicates alterations in the gut microflora, an effect that is expected as pharmacological action of the aminoglycoside antibiotic gentamicin and that can also be explained by the p.o. administration of xenobiotica. Decreased Krebs cycle intermediates (citrate and 2-oxoglutarate) and increased lactate is associated with altered energy metabolism. Increased pseudouridine excretion is associated with cell proliferation and was observed with aristolochic acid and ochratoxin A, for which proliferative processes were observed with histopathology. 5-oxoproline and N,N-dimethylglycine can be associated with oxidative stress. Glucose, a marker of renal damage in clinical chemistry, was observed for all three nephrotoxins studied. Single study analysis with PCA of GC/MS chromatograms and 1H-NMR spectra of urine from 3 studies conducted within the InnoMed PredTox project showing bile duct necrosis revealed alterations in urinary profiles with the onset of changes in clinical chemistry and histopathology. Alterations were mainly decreased Krebs cycle intermediates and changes in the aromatic gut flora metabolites, an effect that may result as a secondary effect from altered bile flow. In conclusion, metabonomics techniques are able to detect toxic lesions at the same time as histopathology and clinical chemistry. The metabolites found to be altered are common to most toxicities and are not organ-specific. A mechanistic link to the observed toxicity has to be established in order to avoid confounders such as body weight loss, pharmacological effects etc. For pattern recognition purposes, large databases are necessary. / Zur Bewertung von Metabonomics-Techniken zur frühen, nicht-invasiven Erkennung von Toxizität wurde Rattenurin nach wiederholter Gabe von Nephrotoxinen mit 1H-NMR und GC/MS analysiert. Untersucht wurden Gentamicin (s.c.-Gabe von 0, 60 und 120 mg/kg Körpergewicht (KG) 2x tägl. über 8 Tage), Ochratoxin A (p.o.-Gabe von 0, 21, 70 und 210 µg/kg KG 5xl wöchentlich für 90 Tage) und Aristolochiasäure (p.o.-Gabe von 0, 0.1, 1.0 und 10 mg/kg KG über 12 Tage). Proben von 16 Studien des InnoMed PredTox Projekts wurden mit 1H-NMR auf den histopathologischen Endpunkt Gallengangnekrose (BDN) untersucht. Folgende Parameter wurden zur 1H-NMR-Analyse mit Wasserunterdrückung verwendet: 1 M Phosphatpuffer, shift lock Reagenz D2O und Referenzierung der chemischen Verschiebung auf D4-Trimethylsilyl­propionsäure, noesygppr1d-Pulssequenz (Bruker). Zur multivariaten Datenanalyse wurden die Spektren in 0.04 ppm große „bins“ unterteilt. Zur GC/MS-Analyse wurden nach Proteinfällung mit Methanol die Urinproben getrocknet und mit Methoxyaminhydrochlorid in Pyridin und Methyl(trimethylsilyl)trifluoracetamid derivatisiert und auf einer DB5-MS -Säule getrennt. Die GC/MS-Chromatogramme wurden mit dem R-Programm-basierten XCMS-Softwarepaket Version 2.4.0 zur multivariaten Datenanalyse vorbereitet. Hauptkomponentenanalyse (PCA) zur Visualisierung von zeit- und dosisabhängigen Unterschieden zwischen Kontrollen und behandelten Tieren und „orthogonal projection to latent structures“-Diskriminantenanalyse (OPLS-DA) zur Identifizierung von Toxizitätsmarkern erfolgte mit SIMCA P+11.5 Die Chenomx-NMR-Suite wurde zur Identifizierung und Quantifizierung von 1H NMR-basierten Markern verwendet; GC/MS-basierte Marker wurden mit der „NIST Mass Spectral Database“ und durch Koelution mit Referenzstandards identifiziert. PCA unterschied Kontroll- von behandelten Tieren zum gleichen Zeitpunkt wie Histopathologie. Gegenüber klinisch-chemischen Parametern war Metabonomics in einigen Fällen empfindlicher. Gentamicin induzierte nach Tag 1 erniedrigte Ausscheidung von Citrat, 2-Oxoglutarat, Hippurat, Trigonellin und 3-Indoxylsulfat Urin, sowie erhöhte Ausscheidung von Lactat, Alanin, 5-Oxoprolin und Glucose, begleitet von geringfügigen Änderungen in klinisch-chemischen Parametern. Ochratoxin A verursachte nach zwei Wochen in einzelnen Tieren eine erniedrigte Ausscheidung von Citrat, 2-Oxoglutarat und Hippurat sowie eine erhöhte Ausscheidung von Glucose, myo-Inositol, N,N-Dimethylglycin, 5-Oxoprolin, Glycin, Alanin und Lactat, korrelierend mit Veränderungen in klinisch-chemischen Parametern und in der Histopathologie. Verwendung von Histopathologiedaten in multivariaten Modellen zur Markeridentifizierung erhöhte die Konfidenz der Marker. Aristolochiasäure induzierte eine erniedrigte Ausscheidung von Citrat, 2-Oxoglutarat, Hippurat und Creatinin und eine erhöhte Ausscheidung von 5-Oxoprolin, N,N-Dimethylglycin und Pseudouridin, ohne Veränderung der klinisch-chemischen Parameter oder der Histopathologie. Erniedrigte Ausscheidung von Hippurat weist auf eine veränderte Darmmikroflora hin; für das Aminoglykosid-Antibiotikum Gentamicin ist dies ein pharmakologischer Effekt, der für die perorale Gabe von Xenobiotica zu erwarten ist. Erniedrigte Ausscheidung von Citrat und 2-Oxoglutarat und erhöhte Ausscheidung von Lactat zeigt einen veränderten Energiestoffwechsel. Erhöhte Ausscheidung von Pseudouridin ist mit Zell­proliferation assoziiert und wurde nach Gabe der Kanzerogene Ochratoxin A und Aristolochiasäure beobachtet, bei denen proliferative Prozesse in der Histopathologie gefunden wurden. 5-Oxoprolin und N,N-Dimethyl­glycin deuten auf erhöhten oxidativen Stress hin. Erhöhte Glucose im Urin, ein Parameter zur Diagnose von Nierenschäden in der klinischen Chemie, wurde in allen drei Studien mit Nephrotoxinen beobachtet. GC/MS- und 1H-NMR-Daten von InnoMed-Studien mit Gallengang­nekrosen als histopathologischen Endpunkt zeigten Veränderung im Urin zeitgleich mit klinisch-chemischen Parametern und Histopathologie; hauptsächlich erniedrigte Ausscheidung von Citratzyklusintermediaten und Veränderungen bei Darmflora-assoziierten Metaboliten, – ein Effekt, der wahrscheinlich veränderten Gallenfluss zurückzuführen ist. Metabonomics ist prinzipiell zum gleichen Zeitpunkt wie klinisch-chemische Parameter und Histopathologie zur Erkennung von toxischen Veränderungen geeignet. Die veränderten Metaboliten sind jedoch zumeist nicht organspezifisch und können mit allgemeinen Toxizitätsmechanismen, wie oxidativem Stress oder Zellproliferation, in Verbindung gebracht werden. Für die Bewertung der Ergebnisse von Metabonomics-Studien ist ein mechanistisches Verständnis der Veränderungen im Urinprofil notwendig, um eine Trennung von toxischen Effekten und solchen, die auf pharmakologische Wirkung, Körpergewichtsverlust etc. zurückzuführen sind, zu erreichen. Für eine Vorhersage von toxischen Mechanismen aufgrund der Urinprofile ist eine größere Datengrundlage notwendig.
14

Quantitative NMR-Spektroskopie in der pharmazeutischen Analytik -- Identität, Reinheit und Gehalt von Arzneistoffen / Quantitative NMR spectroscopy in pharmaceutical analysis -- Identity, purity and content of drugs

Beyer, Tanja January 2011 (has links) (PDF)
Das Ziel der vorliegenden Arbeit war die Klärung der Fragestellung, ob sich die quantitative NMR-Spektroskopie zur Bestimmung von Identität, Reinheit und Gehalt von Arzneistoffen eignet, und wie sich Präzision und Empfindlichkeit dieser Methode im Vergleich zu etablierten chromatographischen Verfahren verhalten. Die quantitative Untersuchung der drei strukturell jeweils verwandten Mehrkomponentengemische Codergocrinmesilat, Clomifencitrat und Flupentixoldihydrochlorid bewies eindrucksvoll die Eignung der 1H-NMR-Spektroskopie als orthogonale, analytische Messmethode im Vergleich zu validierten HPLC-Arzneibuchmethoden. Die im Rahmen einer Validierung der 1H-NMR-Methode ermittelten Ergebnisse erfüllten bezüglich Präzision und Richtigkeit die an eine im pharmazeutischen Bereich eingesetzte analytische Methode gestellten Anforderungen; zudem wurden weitere Prüfparameter wie Selektivität, Linearität, Robustheit und Stabilität verifiziert. Externe-Standard-Experimente wie "Zwei-Röhrchen-Methode" und ERETIC-Verfahren bestätigten die quantitativen Ergebnisse der Internen Standardisierung; jedoch wurde hier -- insbesondere für die ERETIC-Technik -- eine höhere Fehleranfälligkeit und somit eine größere Streuung der Einzelergebnisse beobachtet. Am Beispiel von Codergocrinmesilat und Flupentixoldihydrochlorid konnte zudem die Eignung anderer NMR-aktiver Kerne wie 13C und 19F für die quantitative Analyse von komplexen Substanzgemischen aufgezeigt werden. Das Potential der 1H-NMR-Spektroskopie für die Reinheitsprüfung von Arzneistoffen wurde am Beispiel der Aminosäure L-Alanin aufgezeigt. Die zu erwartenden Verunreinigungen Glutamin-, Asparagin-, Äpfel- und Fumarsäure konnten im Gegensatz zu den "veralteten" Prüfmethoden des Europäischen Arzneibuches eindeutig identifiziert und quantifiziert werden; mit einer Bestimmungsgrenze von <= 0.03% wurden die Vorgaben der ICH-Richtlinie Q3A(R2) erfüllt. Die deutliche Übereinstimmung der NMR-spektroskopisch ermittelten Ergebnisse einer quantitativ untersuchten Alanin-Modellmischung mit einer für den Routinebetrieb geeigneten HPLC-Methode unter Einsatz verschiedener Detektoren wie CAD, NQAD, ELSD und MS, sowie der Vergleich wichtiger Prüfparameter wie Linearität und Nachweisgrenze bestätigten die Eignung der 1H-NMR-Spektroskopie im Rahmen der routinemäßig durchgeführten Qualitätskontrolle. Die Aufdeckung von Arzneimittelfälschungen mit Hilfe der NMR-Spektroskopie wurde im Rahmen dieser Arbeit anhand der zwei aktuellen Fallbeispiele Heparin und Glycerin näher untersucht. Die in Zusammenhang mit dem Heparin-Skandal verantwortliche Kontaminante OSCS konnte neben Dermatansulfat und weiteren natürlich vorkommenden Glykosaminoglykan-Verunreinigungen im 1H-NMR-Spektrum eindeutig identifiziert und auf 0.1% OSCS bzw. 0.5% Dermatansulfat begrenzt werden. Eine präzise und richtige quantitative Bestimmung der beiden Glykosaminoglykane wurde über die N-Acetyl-Resonanzen mit Hilfe der Signalhöhenbestimmung und dem Standard-Additionsverfahren ermöglicht; deutliche Abweichungen vom "wahren" Gehalt wurden hingegen, bedingt durch starke Signalüberlagerungen, nach Flächenvergleich beobachtet. Weitere Verunreinigungen, insbesondere Lösungsmittelrückstände, die während des Extraktions- und Reinigungsprozesses des Heparins eingesetzt werden, konnten ebenfalls über charakteristische Resonanzen identifiziert und mit Hilfe der Internen-Standard-Methode quantitativ erfasst werden. Eine umfangreiche Untersuchung von 145 Heparin-API-Mustern mittels NMR-Spektroskopie und weiteren, neuentwickelten Verfahren wie HPLC, CE, IR- und Raman-Spektroskopie konnte die Eignung der entwickelten 1H-NMR-Methode bestätigen. Potentielle Glycerin-Kontaminanten wie Diethylenglycol und Ethylenglycol konnten ebenso wie eine weitere, natürlich vorkommende Verunreinigung, Propylenglycol, mittels 1H- und 13C-NMR-Spektroskopie identifiziert und quantifiziert werden. Beide Methoden erfüllten die in der USP beschriebenen Anforderungen, die für pharmazeutisch eingesetztes Glycerin jeweils höchstens 0.1% Diethylenglycol bzw. Ethylenglycol erlaubt. Während die quantitative Reinheitsprüfung beim Einsatz der 1H-NMR-Spektroskopie mit einer Messdauer im Bereich von etwa 30 min für den Routineeinsatz geeignet ist, ist die entwickelte quantitative 13C-NMR-Methode beim Einsatz von Spektrometern geringer Magnetfeldstärke aufgrund einer geringen Nachweisempfindlichkeit und der NOE-Problematik für den Routinebetrieb nur bedingt anwendbar. Abschließend kann zusammengefasst werden, dass die untersuchten Beispiele die NMR-Spektroskopie als in hohem Maße geeignet für die quantitative Analyse von Arzneimitteln ausweisen. / The main objective of the present thesis was the investigation of the suitability of quantitative NMR spectroscopy for identification, purity assay, and quantification of a given drug, as well as a comparison of precision and sensitivity of this method with well-established chromatographic routines. The quantitative analysis of the three multi-component drug mixtures codergocrine mesylate, clomiphene citrate, and flupentixol dihydrochloride strikingly demonstrates the suitability of the 1H NMR spectroscopy as an independent analytical measurement technique in comparison to validated HPLC methods of international pharmacopoeias. Concerning precision and accuracy, the results obtained from validation of the 1H NMR method met the requirements that are made on an analytical routine for pharmaceutical purposes; additionally, further validation parameters such as selectivity, linearity, robustness, and stability have been verified. Experiments like the "twin tube" and ERETIC techniques utilizing external standards confirm these results; however, in this context an increased error rate and therefore larger variance was observed, especially in the case of ERETIC. By means of codergocrine mesylate and flupentixol dihydrochloride, additionally the suitability of other NMR active nuclei as 13C or 19F for quantification of complex mixtures was shown. The potential of the 1H NMR spectroscopy for purity assays was demonstrated for the example of the amino acid L-alanin. Identification and quantification of the expected impurities glutamic acid, aspartic acid, malic acid, and fumaric acid was possible, in contrast to "out-dated" test methods of the European Pharmacopoeia; achieving a limit of quantification <= 0.03%, the demands of the ICH guideline Q3A(R2) have been met. Concerning the quantification of an alanine model mixture, the clear agreement between the results obtained by means of NMR spectroscopy and a HPLC method using various detectors like CAD, NQAD, ELSD, and MS, suited for routine analysis, as well as the comparison of various relevant parameters such as linearity and limit of quantification confirmed the qualification of 1H NMR spectroscopy in the field of routine quality assurance. Within the scope of this work, the disclosure of counterfeit drugs by means of NMR spectroscopy was investigated in detail utilizing two current case studies, namely heparin and glycerin. Besides dermatan sulfate and other natural occurrences of glycosaminoglycan impurities, the contaminant OSCS revealed in connection with the recent heparin affair was clearly identified in the 1H NMR spectrum and these contaminants could be limited to 0.1% OSCS and 0.5% dermatan sulfate, respectively. A precise and accurate quantification of these two glycosaminoglycanes was achieved using signal height and standard addition methods applied to the N-acetyl resonances; comparison of signal areas however yielded considerable deviations from the "true" content, which are due to strong signal overlap. Further contaminants, especially solvent residues originating from the extraction and purification processes of heparin, have been able to be identified with the help of characteristic resonances; their quantification was possible. An extensive study of 145 heparin API samples by means of NMR spectroscopy and other novel techniques such as HPLC, capillary electrophoresis, IR and Raman spectroscopy confirmed the qualification of the developed 1H NMR method. Potential contaminants in glycerin such as diethylene glycol and ethylene glycol have been able to be identified as well as quantified by means of 1H and 13C NMR spectroscopy, as was the case for propylene glycol, which is naturally present. Both methods met the requirements of the USP, limiting the amount of diethylene glycol and ethylene glycol for pharmaceutical purposes to 0.1%, respectively. While 1H NMR spectroscopy with a measurement time of about 30 min is well suited for routine application, the applicability of the 13C NMR method is limited due to the NOE effect and the low sensitivity at low field strengths. In conclusion, each of the attended topics showed, that NMR spectroscopy is a powerful tool within the framework of quantitative drug analysis.
15

Excitation functions of natZn(p,x) nuclear reactions with proton beam energy below 18 MeV

Asad, A. H., Chan, S., Morandeau, L., Cryer, D., Smith, S. V., Price, R. I. 19 May 2015 (has links) (PDF)
Introduction We measured the excitation functions of natZn (p,x) reactions up to 17.6 MeV using the stacked-foils activation technique. High-purity natural zinc (and copper) foils were irradiated with proton beams from an 18MeV medical cyclotron, the predominant purpose of which is to provide a routine regional service for clinical PET radiopharmaceuticals. Thick-target integral yields were also deduced from the measured excitation functions of the produced radioisotopes. These results were compared with the literature and were found to be in good agreement with most but not all published reports. Material and Methods The excitation functions of the natZn(p,x) reactions were measured by the well-known stacked foil technique (1). High purity zinc foils (99.99%; Goodfellow Metals Ltd., UK) each thickness 0.025 ± 0.003 mm with isotopic composition 64Zn (48.6 %), 66Zn (27.9 %), 67Zn (4.1 %), 68Zn (18.8 %) and 70Zn (0.6 %) were loaded into a solid targetry system on a 300-mm external beam line utilising helium-gas and chilled water to cool the target body (2). A typical foils stack consisted of repeated units of four Zn foils interleaved with a high purity copper foil (0.025 ± 0.004 mm); the latter for monitoring beam flux using the well documented 63,65Cu(p,n)63,65Zn reactions. Foil stacks were irradiated with a primary beam of energy 17.6 MeV, accounting for beam degradation by an obligatory 0.0250 ± 0.0005 mm-thick Havar® foil beam-line vacuum window. Irradiation was for 3 min at a beam current of 5 µA. Activated foils were measured using cryo high-purity Ge γ-spectroscopy to quantify the product radionuclides 61Cu, 66Ga, 67Ga and 65Zn. Radioactivity of each isotope was corrected to end of bombardment (EOB). Results and Conclusion New cross-sectional data for natZn(p,x) reactions up to 17.6 MeV yielding 61Cu, 66Ga, 67Ga and 65Zn isotopes were measured in independent replicated (N = 3) experiments. Results were generally in good agreement with published data. These isotopes can potentially be used in clinical or preclinical studies, following appropriate chemical separations of the zinc, gallium and copper (3). The FIG. 1 shows thick-target integral yields calculated from excitation functions measured in this study. It can be calculated (for example) that useful activities of 61Cu can be produced using a 100 µm thick natZn target in a beam provided by a standard medium-energy medical cyclotron. For example, an irradiation at 40 µA for 2 hr at 17.6 MeV would produce approximately 1.7 GBq of 61Cu at EOB. Such currents are readily achievable using solid targetry in our laboratory (2).
16

Modeling a water target with proton range and target density coupling

Faugl, T., Stokely, M., Wieland, B., Bolotnov, I., Doster, J., Peeples, J., Poorman, M. 19 May 2015 (has links) (PDF)
Introduction Combined thermal and fluid modeling is useful for design and optimization of cyclotron water targets. Previous heat transfer models assumed either a distribution of void under saturation conditions [1] or a static volumetric heat distribution [2]. This work explores the coupling of Monte Carlo radiation transport and Computation Fluid Dynamics (CFD) software in a computational model of the BTI Targetry visualization target [3]. In a batch water target, as the target medium is heated by energy deposition from the proton beam, a non-uniform density distribution develops. Production target operation is ultimately limited by the range thickness of the target un-der conditions of reduced water density. Since proton range is a function of target density, the system model must include the corresponding change in the volumetric heat distribution. As an initial attempt to couple the radiation transport and fluid dynamics calculations, the scope of this work was limited to subcooled target conditions. With the increasing availability of multi-phase CFD capabilities, this work provides the basis for extending these calculations to boiling targets where the coupling of the radiation transport and fluid dynamics is expected to be much stronger. Material and Methods The Monte Carlo radiation transport code MCNPX was used to create energy deposition data tallies from proton interaction with the target water and beam window. The beam was modeled as a Gaussian distribution with 50% transmission through a 10 mm diameter collimator. The energy deposition tally was translated into a 3-dimensional, point-wise heat generation table and supplied as an input to the CFD code ANSYS CFX. An iterative method was developed to couple the volumetric heat distribution from MCNPX to the fluid density distribution computed within ANSYS CFX. A 3-dimensional table of water density was exported from ANSYS CFX and imported into MCNPX. MCNPX was then used to calculate the heat generation rate (due to proton interactions) based on the assumed density profile. Applying the new heat generation profile to the ANSYS CFX model resulted in changes to the beam shape and penetration depth. The iterative scheme continued until converged values for density and heat generation rate were achieved. Monte Carlo methods are computationally ex-pensive due to the large number of particle histories needed to generate accurate results. CFD simulations are also computationally expensive due to the large number of mesh elements needed. Optimization methods were used for both MCNPX and ANSYS CFX to result in achievable solution times and memory requirements. Local mesh refinement in the beam strike area was necessary for convergence. This was achieved by extending the boundary layer of the mesh within the target water domain deeper into the fluid. This allowed for better resolution within the beam strike area without significantly increasing the expense in the remainder of the fluid domain. Additionally, direct simulation of the cooling water domain was decoupled from the computational model during the iterative process. Heat transfer coefficients from the first iteration were applied as a boundary condition for subsequent iterations. Once the beam and density distributions reached convergence, the beam data was applied to a high fidelity “full” model, which included the cooling water domain as well as increased particle histories in MCNPX. Results and Conclusions The target was initially modeled assuming a 10 μA beam of 18 MeV protons into uniform density target water with operating pressure of 400 psi. These conditions resulted in predicted maximum temperatures below the saturation temperature. The final converged beam data was compared to the original (uniform density) beam data. As expected, the density-dependent beam penetrates farther into the target water than when a uniform density is assumed. The density-dependent beam has a broader Bragg peak region with a lower maximum heat generation rate than the original beam. A line plot of the volumetric heat generation rate through the center of the beam is shown in FIG. 2. Even though the maximum volumetric heat generation rate was lower, the density-dependent beam resulted in a higher maximum fluid temperature. Experiments were performed with the visualization target on an IBA 18/9 cyclotron, and video was recorded for a range of target operating conditions. Analysis of the video recordings from the experiment gives a peak fluid velocity in the target chamber of roughly 5–10 centimeters per second with a 10 A beam current. The velocities predicted by the CFD model are within the same range. There is also good agreement be-tween proton beam range between the experiment and model. The effective proton range can be seen in FIGURES 3 and 4. Future work will include applying the coupling technique for two-phase boiling conditions and to gas targets. If successful, this method should be a powerful tool for design and optimization of liquid and gas targets.
17

On the way to molecular optical switches a solid-state NMR study of trans-cinnamic acids

Fonseca, Isa Alexandra Queiroz da January 2008 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2008
18

Potentiometrische und NMR-spektroskopische Untersuchungen der Eigenschaften von j6-(p-Cymol)Ru(II)-markierten Aminosäuren

Schlüter, Anke. Unknown Date (has links)
Universiẗat, Diss., 1999--Bochum.
19

Strukturuntersuchungen von Cadmiumhydroxidhalogeniden mittels Diffraktion, NMR-Spektroskopie und quantenmechanischen Ab-Initio-Berechnungen /

Kister, Stefan. Unknown Date (has links)
Universiẗat, Diss., 1999--Dortmund.
20

Dosimetrische Charakterisierung laserbeschleunigter Teilchenstrahlen für in vitro Zellbestrahlungen / Dosimetric characterization of laser-accelerated particle beams for in vitro cell irradiations

Richter, Christian 24 July 2017 (has links) (PDF)
Die Anwendung von Hochintensitätslasern zur Beschleunigung von Teilchen bietet eine Alternative zu klassischen Teilchenbeschleunigern und den von diesen erzeugten Strahlenqualitäten. Nach großen Fortschritten auf dem Gebiet der Laser-Teilchenbeschleunigung wurde die Anwendung der neuen Technologie in der klinischen Ionentherapie vorgeschlagen und diskutiert. Bevor es dazu kommen kann, muss aber neben der Verbesserung der Strahleigenschaften, wie z. B. der Erhöhung der Energie, und der Stabilität der Teilchenbeschleunigung auch eine geeignete physikalische und dosimetrische Charakterisierung entwickelt und die biologische Wirksamkeit dieser neuartigen, ultrakurz gepulsten Strahlenqualität mit extrem hoher Pulsdosisleistung untersucht werden. Dies erfordert eine ganze Reihe von umfangreichen Experimenten der notwendigen Translationskette, angefangen von in vitro Zellbestrahlungen über in vivo Studien bis hin zu präklinischen Untersuchungen und ersten klinischen Studien. Hierzu wurden das Verbundprojekt onCOOPtics gegründet und in einem ersten Schritt in vitro Zellbestrahlungen zur Untersuchung der biologischen Wirksamkeit laserbeschleunigter Teilchen durchgeführt. Dazu wurden Dosis-Effekt-Kurven für humane Tumor- und Normalgewebs-Zelllinien jeweils für mehrere biologische Endpunkte bestimmt. Begonnen wurde dabei mit der umfangreichen Untersuchung laserbeschleunigter Elektronen am JeTi-Lasersystem in Jena, auf welche zum Zeitpunkt der Verfügbarkeit des DRACO-Lasersystems in Dresden die dosimetrische und strahlenbiologische Charakterisierung laserbeschleunigter Protonen an diesem Lasersystem folgte. Dabei stellte die Entwicklung einer präzisen Dosimetrie zur Bestimmung der applizierten Dosis aufgrund der Strahleigenschaften laserbeschleunigter Teilchen eine große Herausforderung dar. Sie ist aber sowohl im Hinblick auf eine spätere klinische Anwendung als auch für die Durchführung quantitativer strahlenbiologischer Experimente obligatorisch. Diese Arbeit, die im Rahmen des Verbundprojektes entstanden ist, leistet dazu in vielfacher Hinsicht einen wesentlichen Beitrag: Erstens wurden geeignete Detektoren zur präzisen dosimetrischen Charakterisierung laserbeschleunigter Elektronen und Protonen entwickelt, optimiert und charakterisiert sowie präzise kalibriert. So wurden umfangreiche Studien zu verschiedenen Eigenschaften der auch in der klinischen Dosimetrie angewandten radiochromischen Filme durchgeführt und die Filme entsprechend kalibriert. Dabei wurden neue Erkenntnisse u. a. über deren Energieabhängigkeit gewonnen, die für zahlreiche Anwendungen der Filme von Bedeutung sind. Weiterhin wurden verschiedene Ionisationskammern zur Echtzeit-Strahlmonitorierung von laserbeschleunigten Elektronen und Protonen ausgewählt und dosimetrisch charakterisiert. Zudem wurde der Einsatz von CR-39 Festkörperspurdetektoren zur spektroskopischen Untersuchung laserbeschleunigter Protonen etabliert, indem die Nachverarbeitung und Auslesung der Detektoren charakterisiert und optimiert wurden und außerdem eine retrospektive Filterprozedur der detektierten Krater entwickelt und angewendet wurde. Ferner wurde ein Faraday Cup, der auf die speziellen Eigenschaften derzeitiger laserbeschleunigter Protonen-Strahlenqualitäten abgestimmt ist, entwickelt, charakterisiert und mit drei voneinander unabhängigen Methoden kalibriert. Die radiochromischen Filme und der Faraday Cup konnten daraufhin als Referenzdosimeter sowohl an den konventionellen als auch an den neuartigen Laser-Teilchenbeschleunigern erfolgreich eingesetzt werden. Zweitens bildete die durchgeführte Echtzeit- und Referenzdosimetrie laserbeschleunigter Elektronen die Grundlage für die weltweit ersten systematischen Zellbestrahlungsexperimente dieser Strahlenqualität. Dabei konnten trotz großer Pulsdosisschwankungen alle Anforderungen bezüglich Dosishomogenität, Strahlstabilität, präziser Deposition einer vorgegebenen Dosis und Unsicherheit der bestimmten applizierten Dosis, die für eine quantitative Auswertung der radiobiologischen Daten notwendig sind, erfüllt werden. Exemplarisch sei die bestimmte Gesamt-Dosisunsicherheit von unter 10% genannt. Drittens wurden auch laserbeschleunigte Protonen so präzise dosimetrisch monitoriert und charakterisiert, dass auch mit dieser Strahlenqualität quantitative strahlenbiologische Untersuchungen durchgeführt werden konnten. Herausgefordert durch die kurze Reichweite der Protonen im Submillimeterbereich und das breite Energiespektrum dieser Strahlenqualität, gelang dies neben der Charakterisierung und Kalibrierung der einzelnen Detektoren durch die Konzeption und Realisierung eines integrierten Dosimetrie- und Zellbestrahlungssystems (IDOCIS).Weltweit erstmalig wurde eine Echtzeit-Strahlmonitorierung während der Zellbestrahlungen mit laserbeschleunigten Protonen durchgeführt, die sowohl zur kontrollierten Applikation einer vorgegebenen Dosis und zur Strahlüberwachung als auch zusammen mit der durchgeführten Referenzdosimetrie zur hochpräzisen Bestimmung der absolut in den Zellen deponierten Dosis diente. Außerdem trug die parallele und redundante Verwendung zweier voneinander unabhängiger Referenzdosimetrie-Systeme erheblich zur Erreichung einer hohen Zuverlässigkeit und Sicherheit bei. Die Unsicherheit in der bestimmten deponierten Dosis betrug entsprechend für den Endpunkt der residualen DNS-Doppelstrangbrüche 24h nach Bestrahlung, für den eine vollständige Dosis-Effekt-Kurve ermittelt wurde, nur ca. 10%. Die Unsicherheit liegt damit schon fast in dem Bereich, der an klinisch angewandten Beschleunigern zulässig ist (3-5%). Dagegen konnte zu Beginn dieser Arbeit die Dosis laserbeschleunigter Protonen nur mit einer Ungenauigkeit von mehr als 50% abgeschätzt werden. Viertens wurden die zur Bestimmung der relativen biologischen Wirksamkeit notwendigen Vergleichsbestrahlungen mit konventionellen Elektronen- und Protonenstrahlenquellen und die zur Vergleichbarkeit der konventionellen und laserbeschleunigten Strahlenqualitäten erforderlichen Referenzbestrahlungen mit 200kVp Röntgenröhren im Rahmen dieser Arbeit ebenfalls dosimetrisch optimiert und genau charakterisiert. Die dosimetrischen Ergebnisse der vorliegenden Arbeit waren eine notwendige Voraussetzung für die im Rahmen anderer Arbeiten vollzogene strahlenbiologische Auswertung der durchgeführten Zellbestrahlungen. Dabei wurde insgesamt kein signifikanter Unterschied in der strahlenbiologischen Wirksamkeit zwischen laserbeschleunigten, ultrakurz gepulsten und konventionellen, kontinuierlichen Strahlenqualitäten weder für Elektronen noch für Protonen festgestellt. Durch die Konsistenz dieser Ergebnisse für beide Teilchenarten und unterschiedliche biologische Endpunkte ist damit die nächste Stufe auf dem translationalen Weg hin zur klinischen Anwendung laserbeschleunigter Teilchen begehbar: Die Durchführung von in vivo Untersuchungen. Dabei muss zwar von einer zweidimensionalen (Zell-Monolayer) auf eine dreidimensionale Zielvolumenbestrahlung (Tumor) übergegangen werden, wobei aber die im Rahmen der vorliegenden Arbeit entwickelten Dosimetrieverfahren und Detektoren auch bei den Tierbestrahlungen angewendet und eingesetzt werden können. / The application of high-intensity lasers for particle acceleration provides an alternative to conventional particle accelerators and also alternative beam qualities. Soon after the recent progress in the field of laser particle acceleration, its application in clinical ion therapy was proposed and discussed widely. Besides the improvement of the beam properties (increasing of beam energy and stability of particle acceleration process, e. g.) a capable physical and dosimetric characterization has to be developed before the technology can be applied in cancer therapy. The same is true for investigation of the biological effectiveness of this new, ultra-short pulsed beam quality with extremely high pulse dose rate. Hence, the whole translational chain, beginning from in vitro cell irradiation over in vivo studies to the point of preclinical investigations and first clinical trials, is necessary. For this reason, in a first step the joint research project onCOOPtics was founded and in vitro cell irradiation experiments were performed to study the biological effectiveness of laser accelerated particles. Therefore, dose-effect-curves for tumor and normal tissue cell lines were determined for different biological endpoints. Starting with extensive experiments with laser accelerated electrons at the JeTi laser system in Jena, the investigations were continued with dosimetric and radiobiological characterization of laser accelerated protons at the DRACO laser system in Dresden shortly after the DRACO laser started its operation. In this process, the development of a precise dosimetry for determination of the applied dose posed a great challenge due to the beam properties of laser accelerated particles. However, this is a crucial and compulsive requirement for both, the future clinical application and also for the realization of quantitative radiobiological experiments. Compiled in the onCOOPtics framework, this paper contributed to this task in multiple key aspects: Firstly, capable detectors for precise dosimetric characterization of laser accelerated electrons and protons were developed, optimized and characterized as well as precisely calibrated. Thus, comprehensive investigations were performed studying different properties of radiochromic films which are also applied in clinical dosimetry. In addition, these films were precisely calibrated for different beam qualities. Thereby, new findings of the energy dependence of radiochromic films were obtained which are of importance for numerous applications of these films. Moreover, different ionization chambers for real-time beam monitoring of laser accelerated electrons and protons were selected and characterized. Furthermore, the application of CR-39 solid state track detectors was established for spectroscopic investigations of laser accelerated protons by characterizing and optimizing the postirradiation processing and the readout of the detectors. Also a retrospective filter procedure of the detected tracks was developed and applied. Moreover, a Faraday Cup adjusted to the special properties of current laser accelerated proton beam qualities was developed, characterized and precisely calibrated by means of three independent calibration methods. Finally, the radiochromic films and the Faraday Cup could be used as reference dosimeters both for conventional accelerators and also for novel laser particle accelerators. Secondly, the performed real-time and reference dosimetry of laser accelerated electrons was the prerequisite of the first systematic cell irradiation experiments with this beam quality worldwide. Despite high pulse dose fluctuations, all requirements were satisfied concerning dose homogeneity, beam stability, precise deposition of a prescribed dose and uncertainty of the applied dose, that are all necessary for a quantitative evaluation of the radiobiological data. Exemplary, a total dose uncertainty below 10% was reached. Thirdly, laser accelerated protons were precisely monitored and characterized allowing quantitative, well-founded radiobiological investigations with this beam quality. This task was very much challenged by the short range of the protons in the sub-millimeter range and the broad energy spectrum of the beam quality. It was succeeded not only due to the comprehensive characterization and precise calibration of the different detectors but also due to the conception and realization of an integrated dosimetry and cell irradiation system (IDOCIS). For the first time, a real-time beam monitoring during cell irradiation with laser accelerated protons was performed. This real-time monitoring was not only used for controlled application of the prescribed dose and beam monitoring and also – together with the performed reference dosimetry – for precise determination of the deposited dose at cell location. In addition, high reliability and safety was considerably ensured by using two independent reference dosimetry systems in parallel. Hence, the determined uncertainty of the deposited dose was only about 10% for the biological endpoint of the residual DNA double strand breaks 24h after irradiation. For this endpoint a complete dose-effect-curve was obtained. Therefore, the achieved uncertainty is almost as small as necessary at clinically applied accelerators (3

Page generated in 0.0458 seconds