• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The characterization of an intracellular protozoan parasite infecting the digestive gland of abalone, Haliotis midae

Cloete, Yolandi Clignet 19 April 2010 (has links)
M.Sc. / Abalone are among the world’s leading shellfish consumed by human populations. Harvesting in California began in the late 1800s from intertidal zones and in the early 1900s wild abalone were collected by diving. Popular demand for abalone products in the Far East then led to extensive harvesting of wild abalone and a drastic decline in population numbers. This problem was overcome to a degree by the development of land-based abalone farms. At these farms it was possible to breed abalone on a large scale. Currently twelve abalone farms operate in South Africa and the estimated production for 2006 was 537 tons of meat, worth R 80 mil. Parasites and diseases pose threats to the production of abalone, especially under farmed conditions, and can cause considerable financial loss. Labyrinthuloides haliotidis, Haplosporidium nelsoni and Terebrasabelle heterouncinata are a few parasites that contribute to the above mentioned problems. Lately, a new protozoan parasite was discovered in the digestive glands of Haliotis midae farmed in the Western Cape Province, during routine health assessments. For the purposes of this dissertation it is designated an unidentified digestive gland parasite (UDP). The aims of this study are thus to undertake a comprehensive literature review of parasites infecting wild and farmed abalone, as well other shellfish species, describe and characterise the UDP infecting the digestive gland of Haliotis midae based on its structure and ultrastructure, evaluate the role of this parasite in disease by analysing data from histological studies, provide a preliminary indication of the life cycle of this parasite, attempt analysis of DNA from the UDP, and identify potential areas for further research into control of the parasite. A total of 180 abalone, (Haliotis midae) were collected from three abalone farms in the Western Cape during May 2005, October 2005, January 2006 and January 2007. To establish whether this parasite also occurs in wild abalone, a single sampling (six H. midae and 28 H. spadicea) took place during 2006 in Tsitsikamma National Park. Collected farmed and wild abalone were weighed and measured, removed from their shells and then killed according to accepted methods before their digestive glands were removed.
12

Biodiversity and systematics of apicomplexan parasites infecting South African leopard and hinged tortoises

15 March 2010 (has links)
M.Sc. / Research into blood protozoans (haematozoans) infecting African tortoises is scanty with only a few records published, many during the early part of the last century. Little research had been done on the blood parasites of tortoises examined in this study namely, Kinixys lobatsiana, K. belliana belliana, K. natalensis, Geochelone pardalis pardalis, G. pardalis babcocki and Chersina angulata. The study therefore aimed to: 1) examine apicomplexan haematozoan parasites infecting several of South Africa’s indigenous tortoises and compare them with published species descriptions, especially from neighbouring Mozambique; 2) provide host details (identity, ectoparasites, host weight and gender, effects of blood parasites on host cells) and locality records in different seasons for described and new apicomplexan species; 3) describe new and recorded parasites using morphometrics and, if possible, ultrastructural characteristics 4) attempt apicomplexan DNA extraction, amplification and, if feasible, purification; and 5) establish a basis for future research as a result of the acquired knowledge. During the current study, 154 tortoises of six species in three genera, both captive and wild, and from four South African provinces (Gauteng, North West, Kwazulu-Natal and Western Cape) were sampled. Giemsa stained blood smears and use of image analysis enabled morphometric analysis of the apicomplexans and their effects on host cells, while some blood preserved in Karnovsky’s and Todd’s fixatives received detailed examination by transmission electron microscopy. Lastly, blood preserved in lysis buffer during collection, and with the highest parasitaemias, was subjected to parasite DNA extraction and amplification. Comparisons between a published account of apicomplexans recorded from K. b. belliana in Mozambique, and those found in the current study, identified two haemogregarine species. In the present research, Haemogregarina fitzsimonsi Dias, 1953 infected 2/27 (7%) wild North West K. lobatsiana, 2/3 (66%) captive Kwazulu-Natal K. natalensis, 7/14 (50%) captive Kwazulu- Natal K. b. belliana, 3/6 (50%) captive Kwazulu-Natal G. p. pardalis, 2/41 (5%) wild G. p. babcocki and 13/37 (35%) captive Gauteng G. pardalis. In addition, Haemogregarina parvula Dias, 1953, infected 2/14 (14%) captive K. b. belliana and 1/10 (10%) captive G. p. pardalis. An unknown species of haemogregarine, possibly also H. fitzsimonsi occurred in 6/16 (38%) Chersina angulata from the Western Cape. As well as haemogregarines, two haemoproteids were identified: Haemoproteus balazuci Dias, 1953 infected 2/27 (7%) wild North West K. lobatsiana, 2/2 (100%) captive Gauteng K. lobatsiana and 1/41 (2%) wild North West G. p. babcocki; Haemoproteus sp., a likely new species, was found in 1/3 (33%) captive K. natalensis. Infections with Haemogregarina and Haemoproteus were not concurrent in this study, but were found to occur concurrently in Dias (1953) findings, and only the two Haemogregarina spp. occurred together in captive Kwazulu-Natal G. p. pardalis tortoises, which do not occur naturally in the region. Haemogregarina fitzsimonsi did not appear region or host specific, since it infected 5/6 species of tortoises from all provinces sampled. Haemogregarina parvula apparently existed only in tortoises from Kwazulu-Natal. Furthermore, captive Gauteng female tortoises were found to have a higher rate of infection than males and heavier tortoises showed a lower intensity infection than lighter and younger tortoises. On average season appeared to have a slight affect on parasite prevalence, with a higher prevalence during the summer rather than the winter, possibly a result of the activity of the assumed vector, which may be the tick species Amblyomma marmoreum (found on G. pardalis) and/or Amblyomma hebraeum (found on C. angulata). For the new Haemoproteus sp., the small sample size meant that meaningful data on host-specificity and range was not gathered, but Hp. balazuci occurred in K. lobatsiana in the drier regions of the North West and Gauteng. Although DNA extraction was possible for H. fitzsimonsi, the technique requires further refinement and samples with greater parasitemias before it can be used with additional material, and sequencing can be attempted. Thus, new localities, hosts, host data and possible vectors (ticks) were recorded for the apicomplexan species identified by Dias (1953) and they were re-described using modern techniques. Also, possibly new Haemogregarina and Haemoproteus spp. were recorded, but their identity requires confirmation by DNA analysis. It is anticipated that these, and future results, will increase the knowledge of the ecology and biodiversity of apicomplexan haematozoans parasitising chelonian hosts in South Africa, with possible application to the conservation of these and other tortoise species around the world.
13

Synthesis and structure-activity relationship studies of 1,4-naphthoquinone derivatives as potential anti-trypanosomal agents

Chakaingesu, Chikomborero January 2014 (has links)
Human African Trypanosomiasis (HAT) is an infectious, vector-borne protozoal disease which is amongst the so-called neglected diseases. In 2000, at a summit of the United Nations, eight Millennium Development Goals (MDGs) were set, to be achieved by 2015. MDG 6 states “to combat HIV/AIDS, malaria & other diseases”. With just under 2 years to go before the end of 2015, HAT is still thriving in developing countries. The drugs currently used for the treatment of HAT are in short supply, have severe side effects and those used to treat late stages of the disease are very difficult to administer. The aforementioned challenges call for research into this neglected disease in order to develop new, safe and easy-to-use medicines. Naphthoquinones are a class of compounds shown to possess anti-parasitic activity, amongst a variety of other biological activities, and therefore this pharmacophore was selected for this study. The purpose of this study was to synthesise derivatives of 2,3-dichloro-1,4- naphthoquinone to be tested for anti-trypanosomal activity and thereafter conduct structureactivity relationship studies. A series of reactions were carried out using thiophenol, phenol and aniline nucleophiles to synthesise thioether (-S-), ether (-O-) and amino (-NH-) derivatives of 2,3-dichloro-1,4-naphthoquinone with various halogen or methyl substituents. Purification of the products was carried out by recrystallisation. Nuclear magnetic resonance (NMR), infra-red (IR) and high pressure liquid chromatography coupled to an electro-spray ionisation mass spectrometer (HPLC-ESI-MS) were the analytical methods used for structural confirmation of the products. There were eighteen 1,4-naphthoquinone derivatives that were successfully synthesised using ethanolic solutions. Unfortunately, attempts to synthesise 1,4-naphthoquinones in reactions involving 2-(trifluoro-methyl)aniline and 2-isopropyl-5-methylphenol were unsuccessful, presumably due to steric hindrance by the bulky ortho-substituents. Although the aims of the synthetic procedures were to obtain both mono- and disubstituted products by nucleophilic displacement of the chlorine atom(s) of 2,3-dichloro-1,4- naphthoquinone, only monosubstituted products were obtained from substitution with aniline and phenol nucleophiles. Thiol nucleophiles, however, selectively yielded disubstituted products only. Synthesised naphthoquinone derivatives were tested against Trypanosoma brucei and calculation of the EC₅₀ values from the obtained dose-response curves was carried out using the four parametric equation. All the 1,4-naphthoquinones showed a degree of potency, except compounds 1b, 3c and 3e, which had little or lack of potency. Structure-activity relationship studies (SARs and QSARs) were carried out to determine which structural features or functional group substituents of the naphthoquinone derivatives contribute or take away from the desired anti-trypanosomal activity. It was found that compounds with the best in vitro anti-trypanosomal potencies in the series of analogous 1,4-naphthoquinone derivatives had EC₅₀ values in the range 2.137 to 2.884 μM. The most potent compound in the series was 2-chloro-3-(4-(trifluoromethyl)phenylamino)-1,4- naphthoquinone 1e; but it was 142-fold less potent than the reference standard of melarsoprol.
14

Understanding Heat Shock Protein 90 Biology And Exploring Its Potential As A Target Against Neglected Protozoan Diseases

Roy, Nainita 07 1900 (has links) (PDF)
Cells invest a lot of energy in order to get their proteins to fold correctly and attain functionality. It is the functional proteome of a cell that defines the ‘life of a cell’. Cells have therefore employed dedicated machinery called chaperones to enable protein folding. One class of these chaperones is heat shock proteins named so because they were initially discovered to be heat inducible and particularly important during heat stress. However the role of heat shock proteins has now been extended from merely being important for stress tolerance. Heat shock proteins are prominently involved in maintaining the correct folding and conformation of proteins and are vital in regulating the stability between protein synthesis and degradation. One of the heat shock proteins, Hsp90, is an evolutionarily conserved molecular chaperone essential in all known eukaryotes examined so far. Unlike other chaperones, Hsp90 is unique in binding to substrate proteins, which are at a late stage of folding, poised for activation by either ligand binding or interaction with other cellular factors. The most common clients of Hsp90 are signaling proteins, the classic example being steroid hormone receptors and signaling kinases. Several other proteins including transcription factors, proteins involved in cell division and development have also been shown to rely on Hsp90 functioning for their maturation. Hsp90 has emerged as an important molecular chaperone due to the large number of proteins that depend on the activity of Hsp90 for their functionality. Hsp90 plays a central role in multiple cellular processes. Since knock-out of hsp90 is lethal to most eukaryotes, inhibitors of Hsp90 have been widely used to study its function. The most widely used inhibitor is geldanamycin (GA). GA binds to the N-terminal/ATP binding site of Hsp90 which results in the degradation of client proteins. Hsp90 clients have been shown to be proteins important for diverse cellular processes such as protein trafficking, signal transduction, cell-cycle, cellular motility and development in eukaryotes. Exploring new Hsp90 clients gives an insight into more pathways that Hsp90 regulates. Intriguingly, many proteins interact with Hsp90 in a context dependent manner, i.e., under certain environmental cue, or in a particular tissue, or only under certain diseased states. It is therefore essential to study Hsp90 functioning and examine Hsp90-client interactions in more than one model organism. Dictyostelium discoideum: a model organism to study the role of Hsp90 in development The eukaryote, Saccharomyces cerevisiae that has been explored extensively for studying the diverse clientele of Hsp90, lacks various signaling pathways important for growth and differentiation as prevalent in higher eukaryotes. It is desirable to develop a model system that would combine the advantages of a lower eukaryote, in terms of its ease of manipulation and retain the complexities of higher eukaryotes. With this motivation, the social slime mold D. discoideum was explored to examine potential roles of cytoplasmic Hsp90 in growth and development. D. discoideum is ideal for studying signaling pathways important for growth and differentiation and to understand how these pathways control cellular responses to external stimuli. Multicellular development in D. discoideum occurs in response to starvation induced stress. As in case of many other protozoans, we conjectured that Hsp90 may participate in regulating developmental transition from unicellular to multicellular stages in Dictyostelium as well. My initial study attempts, to address the role of Hsp90 (HspD), in development of D. discoideum. Towards this two approaches were taken: through genetic interference of HspD, and the other, through its pharmacological inhibition. An antisense HspD plasmid was designed which upon transfection in D. discoideum, showed a very slow growth phenotype, and the cells did not survive beyond few generations. Therefore to further study the functions of HspD, I resorted to pharmacological inhibition by using the specific, well characterized inhibitor, GA. As a first step towards this I examined whether GA was capable of binding to HspD from D. discoideum cell lysate. Towards this, GA was immobilized to NHS-sepharose beads, and bound proteins were examined. Western blot of the bound fraction, using antibody specific to HspD, identified it as a predominant protein being pulled down. This was further confirmed by mass spectrometry. To be able to compare Hsp90 from D. discoideum with Hsp90s from other model organisms, HspD was cloned, purified and biochemically characterized. Comparison of ATPase activities of HspD with Hsp90’s from other systems indicates HspD to possess a relatively low ATPase activity with a Kcat of 1.6 x 10-3 min-1. The dissociation constant of GA for HspD was found to be 0.8 µM, which was in the range similar to Hsp90s from other systems. In addition, we have now obtained structural data on HspD in collaboration with crystallography groups. The N-terminal domain of HspD has been crystallized, both in -free and ligand-bound forms. Crystal structure comparison of HspD with Hsp90 from S. cerevisiae shows overall fold similarity yet some important differences in side chain orientations of specific residues in the ATP binding domain. Interestingly, on treating D. discoideum cells with GA or another Hsp90 N-terminal inhibitor, Radicicol, it was found that, while control cells progressed to develop into fruiting bodies, GA/Radicicol treated cells resulted in delayed development, and were finally arrested at the ‘mound’ stage. This suggested potential involvement of HspD in developmental progression beyond the mound stage. In order to identify the pathways that are probably affected by HspD in D. discoideum development, cells were treated with/without GA and subjected to comparative proteomics using mass spectrometric analysis. Amongst other differences, there was an obvious absence of peptides corresponding to the protein paxillin in GA treated cells. The results were verified by Western blot analysis, using a specific antibody against paxillin, wherein a drastic decrease in paxillin levels were observed in cells treated with GA. Paxillin is a key player in focal adhesion sites that functions as an adaptor protein to recruit diverse cytoskeletal and signaling proteins into a complex, and is essential for cellular proliferation and cell-substrate adhesion. My studies suggest that one of the pathways through which HspD regulates development is through cellular motility as Hsp90 was involved in regulating proteins necessary for motility and cytoskeletal organization at focal adhesion points during development in D. discoideum. Hsp90 as a target for Trypanosoma evansi infections In addition to examining the role of Hsp90 in differentiation in D. discoideum, I have also looked at the potential of Hsp90 under diseased conditions. Towards this, I explored the protozoan parasite, T. evansi, which causes a fatal disease ‘surra’. Surra is a neglected disease that mainly affects domestic and wild animals including equines, camels, cattle and buffaloes. The parasite causes significant economic losses to livestock industry. While this infection is mainly restricted to domestic (camels, equines, cattle, buffaloes, goats, sheep, pigs, dogs etc.) and wild animals, recent reports indicate their ability to infect humans. There are no reliable sensitive and specific diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable. With a view to identifying potential diagnostic markers and drug targets I have studied the clinical proteome of T. evansi infection using mass spectrometry. I have been able to identify almost 166 proteins of T. evansi, which also included potential drug and vaccine targets. Due to absence of any genome sequence information from T. evansi, most of the peptides obtained matched to its related species, T. brucei, T. cruzi and also few from Leishmania major. Importantly, I was also able to identify peptides from Hsp90. Hsp90 from T. evansi was cloned and its sequence was also obtained. To investigate the possibility of exploring Hsp90 as a target against Surra infections, TeHsp90 protein was purified by expressing it in bacterial cells, and its drug (GA) binding ability was examined in-vitro. The dissociation constant of GA for HspD was found to be 1.4 µM, which was in the range similar to Hsp90s from other systems. The ability of 17AAG (a derivative of GA) was examined in inhibiting T. evansi infection at pre-clinical level. Towards this, swiss female mice were infected with purified parasites and then the drug was injected either immediately, in one group of mice, and in another group of mice the parasites were challenged with the drug only after the onset of infection. Interestingly, both groups of mice were found to get cured using Hsp90 inhibitor. The pre-clinical results suggested that Hsp90 was an interesting drug target and its inhibitor could indeed be used against ‘surra’ infections. Hsp90 from Giardia lamblia: An unusual case Hsp90 was also examined from another pathogenic protozoan, Giardia lamblia, one of the leading causes of diarrhea in the world. Previous studies from our lab have shown Gardial Hsp90 to be coded by two different ORFs, spliced together in trans. This is indeed the only example of trans-splicing in Hsp90 known so far. My study further characterizes this finding through analysis of transcription levels of the individual ORFs, using Northern blot analysis. Importantly, I was able to detect transcripts of all three forms of Hsp90; full-length, N terminus as well as C terminus, suggesting that these are expressed and may have biological significance. To understand the significance of these independent transcripts, I have examined relative levels of expression of all three forms by Real-time PCR analysis wherein there was almost 90 fold and 5 fold lesser transcript level of N terminus and C terminus Hsp90 observed, respectively as compared to the full-length GlHsp90 expression. Previous reports have shown Hsp90 from all known organisms, to get up regulated during heat shock. Thus it was important to examine the effect of heat stress on the expression of these independent transcripts. Interestingly, different domains were found to get independently induced during heat stress. The transcript level of HspC was seen to be almost similar to that of full-length upon heat shock. There was also a significant up regulation observed in HspN transcript upon heat shock. Taking together all these observations, these results suggest a possible role for the independent domains, HspN and HspC during heat stress in G. lamblia. Furthermore, I have cloned and purified one of the individually expressed domains, HspN and characterized it biochemically. HspN was found to be able to bind to ATP, however lacked ATPase activity. Taking together all these observations, it suggests a possible role for the independent domains, HspN and HspC which needs to be investigated further. Summary Altogether, my studies establish the importance of alternate model systems in understanding the biology of Hsp90. The importance of Hsp90 was first established in growth and development of a nonpathogenic protozoan D. discoideum. My results provide significant insights into the additional pathways that Hsp90 regulates during D. discoideum development. One such important pathway was delineated to be cellular locomotion and motility. Further, I have also studied the importance of Hsp90 in neglected infectious diseases. In addition to providing a glimpse into the pathways operational during disease manifestation in T. evansi, we have shown Hsp90 to be effective in pre-clinical trials against T. evansi infections. Hsp90 from another pathogenic protozoan, G. lamblia, has also been studied. This is by far the only organism, in which there is an independent expression of the N-and C-terminal domain of Hsp90. The rare gene organization, coupled with independent expression of domains of Hsp90, makes this organism important to examine novel functions of this chaperone.
15

Investigation of the role of the GGMP motif of Plasmodium falciparum Hsp70-1 on the chaperone function of the protein and its interaction with a co-chaperone, PfHop

Makumire, Stanley 20 September 2019 (has links)
PhD (Biochemistry) / Department of Biochemistry / The main malaria agent, Plasmodium falciparum expresses an Hsp70 (PfHsp70-1) which plays a significant role in parasite survival. PfHsp70-1 is distinct in that it possesses glycine-glycine-methionine-proline (GGMP) tetrapeptide repeats in its C-terminal domain. To date, the GGMP motif of PfHsp70-1 has not been studied. The motif is positioned within the C-terminal lid segment of PfHsp70-1. The motif is also about seven residues upstream the terminal EEVD residues that are responsible for the interaction of PfHsp70-1 with its functional regulators (co-chaperones). P. falciparum Hsp70/Hsp90 organizing protein (PfHop) constitutes one of the functional regulators of PfHsp70-1. PfHop allows PfHsp70-1 and its chaperone partner, PfHsp90 to form a functional partnership. Given the proximity of the GGMP repeats to the C-terminus of PfHsp70-1, it was postulated in this study that the GGMP repeat residues may regulate attachment of PfHop to PfHsp70-1. Hence, this study hypothesized that the GGMP repeat motif is important for the interaction between PfHop and PfHsp70-1 as well as the chaperone activity of PfHsp70-1. Two variants in which the N-terminal and the C-terminal GGMP repeats were conservatively substituted were generated. E. coli Hsp70 (DnaK) lacks a GGMP motif. Thus, the GGMP motif of PfHsp70-1 was introduced into E. coli DnaK in order to generate a third GGMP variant. Recombinant forms of PfHsp70-1, DnaK, and their GGMP variants were heterologously expressed in E. coli XL1 Blue cells. The proteins were purified to homogeneity by using a combination of Ni-NTA affinity chromatography, ion exchange, and size exclusion chromatography. Purified proteins were then biophysically characterized using CD spectroscopy and tryptophan fluorescence. Findings from this study revealed that there were minimal secondary structural differences between PfHsp70-1, DnaK and their GGMP variants. In order to investigate the chaperone function of PfHsp70-1, DnaK and the GGMP variants, a complementation assay in E. coli dnak756 cells whose Hsp70 is functionally compromised was conducted. The PfHsp70-1 GGMP variants were able to suppress the thermosensitivity of the E. coli cells. However, the Investigation of the role of GGMP motif of Plasmodium falciparum Hsp70-1 on the chaperone function of the protein and its interaction with a co-chaperone, PfHop ii DnaK-G variant failed to confer cytoprotection to the E. coli dnak756 cells. To further validate the findings from the complementation assay, the ability of the recombinant proteins to suppress aggregation of heat stressed Malate dehydrogenase (MDH) was elucidated. PfHsp70-1 had better MDH aggregation suppression capabilities than its GGMP variants. Overall, findings from the MDH aggregation suppression assay suggest that the GGMP repeats may contribute towards substrate binding. Substrate binding might be dependent on the specific positioning of a particular repeat in the GGMP motif of PfHsp70-1. Furthermore, the ATPase activity of PfHsp70-G632 and PfHsp70-G648 was significantly reduced compared to PfHsp70-1 (wild type). However, PfHsp70-G632 had the lowest ATPase activity. Interestingly, the ATPase activity of PfHsp70-G632 was enhanced in the presence of synthetic Hsp70 model peptide substrates. Slot blot and ELISA approaches confirmed that the GGMP mutations partially abrogated the interaction of PfHsp70-1 with PfHop. Altogether, the findings suggest that the GGMP motif of PfHsp70-1 has marginal effects on the structure of PfHsp70-1. In conclusion, this study provides the first direct evidence that the GGMP motif is important for the chaperone function of PfHsp70-1 as well as its interaction with PfHop. / NRF
16

Exploration of interaction between Plasmodium falciparum Hsp70-x (PfHsp70-x) and human Hsp70-Hsp90 organizing protein (human Hop)

Mabate, Blessing 09 1900 (has links)
MSc (Biochemistry) / Department of Biochemistry / Malaria is a disease that claims about half a million lives annually, mainly children. There are 5 Plasmodium species that cause malaria; namely, P. falciparum, P. ovale, P. malariae, P. knowlesi and P. vivax. P. falciparum is the most virulent of them all. The parasite upregulates some heat shock proteins (Hsps) in response to stress it encounters during its life cycle. These Hsps play a major role in proteostasis. The drug resistance of P. falciparum to traditionally used remedies has led to a need for the development of novel drugs. Hsps have been implicated as antimalarial drug targets. Hsps act as molecular chaperones and some make complexes, which are important in facilitating protein folding. As an example, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) form a functional complex through an adaptor protein, Hsp70-Hsp90 organizing protein (Hop). P. falciparum expresses six Hsp70s that are localized in different subcellular compartments. Amongst them, P. falciparum Hsp70-x (PfHsp70-x), is exported to the erythrocyte where it is implicated in host cell remodeling. PfHsp70-x possesses an ATPase domain, substrate binding domain and a C-terminal subdomain. PfHsp70-x possesses an EEVN motif on its C-terminus which is implicated in interactions with co-chaperones amongst them, Hop. Although some of the chaperone functions of PfHsp70-x have been reported, its interaction with human chaperones has not been investigated. The availability of PfHsp70-x in the infected erythrocyte cytosol presents a possibility that this protein may functionally cooperate with human Hsp90 via human Hop (human Hop). This hypothesis that PfHsp70-x interacts with human chaperones is strengthened by the absence of Hsp90 and Hop of parasite origin in the infected erythrocytes. The main aim of this study was to explore the chaperone activity of PfHsp70-x and its functional co-operation with human Hop. Recombinant PfHsp70-x (full length and EEVN deletion mutant) proteins were expressed in E. coli XL1 Blue cells and purified using nickel affinity chromatography. PfHsp70-x was found to be structurally comprised of mostly alpha helices and demonstrated heat stability based on circular dichroism (CD) spectrometry studies. It was established that the EEVN motif may be important for the ATPase activity of PfHsp70-x. However, it was established that the EEVN motif was not important in regulating the holdase chaperone (protein aggregation suppression) function of PfHsp70-x. Furthermore, PfHsp70-x and its mutant preferentially bound to asparagine-rich peptides. Parasite proteins have high asparagine repeat regions as compared to human proteins. In addition, preference for asparagine-rich proteins iii could signify that PfHsp70-x is biased towards binding proteins of parasitic origin. Surface plasmon resonance (SPR) analysis suggested that PfHsp70-x interacts with human Hop with relatively higher affinity compared to its EEVN minus derivative. In conclusion, the removal of the EEVN motif of PfHsp70-x does not affect the chaperone function of PfHsp70-x. However, the EEVN motif is essential for the interaction of PfHsp70-x with human Hop.
17

Hybrid multi-scale mathematical modelling of malaria infection transmission

Vele, Khathutshelo 18 September 2017 (has links)
MSc Applied Mathematics) / Department of Mathematics and Applied Mathematics / See the attached abstract below
18

Establishment of interaction partners of Plasmodium falciparum heat shock protein 70-x(PfHsp 70-x)

Monyai, Florina Semakaleng 18 May 2018 (has links)
MSc (Biochemistry) / Department of Biochemistry / Plasmodium falciparum is a unicellular protozoan parasite that causes malaria in humans. The parasite is passed to humans through mosquito bites and migrates to the liver before it infects host erythrocytes. It is at the erythrocytic stage of development that the parasite causes malaria pathology. Malaria is characterized by the modification of host erythrocytes making them cytoadherent. This is as a result of formation of protein complexes (knobs) on the surface of the erythrocyte. The knobs that develop on the surface of the erythrocyte are constituted by proteins of host origin as well as some proteins that the parasite ‘exports’ to the host cell surface. Nearly 550 parasite proteins are thought to be exported to the infected erythrocyte. Amongst the exported proteins is P. falciparum heat shock protein 70-x (PfHsp70-x). Hsp70 proteins are known to maintain protein homeostasis. Thus, the export of PfHsp70-x may be important for maintaining protein homeostasis in the host cell. PfHsp70-x is not essential for parasite survival although is implicated in the development of parasite virulence. This is possibly through its role in facilitating the trafficking of parasite proteins to the erythrocyte as well as supporting the formation of protein complexes that constitute the knobs that develop on the surface of the infected erythrocyte. The main objective of the current study was to investigate protein interaction partners of PfHsp70-x. It is generally believed that PfHsp70-x interacts with various proteins of human and parasite origin. Potential candidate interactors include its protein substrates, Hsp70 co-chaperones such as Hsp40 members, and human Hsp70-Hsp90 organizing protein (hHop). The establishment of the PfHsp70-x interactome would highlight the possible role of PfHsp70-x in the development of malaria pathogenicity. Based on bioinformatics analysis, PfHsp70-x was predicted to interact with some exported P. falciparum Hsp40s, hHop and human Hsp90 (hHsp90). Recombinant forms of PfHsp70-x (full length and a truncated form that lacks the C-terminal EEVN motif implicated in co-chaperone binding) were expressed in E. coli BL21 Star (DE3) cells. Recombinant hHop and hHsp70 were expressed in E. coli JM109 (DE3) cells. The proteins were successfully purified using nickel affinity chromatography. Co-affinity chromatography using recombinant PfHsp70-x and immuno-affinity chromatography using PfHsp70-x specific antibody did not confirm the direct interaction of PfHsp70-x with human Hop. However, the direct interaction of hHop and PfHsp70-x has previously been validated in vitro and the current bioinformatics data support ii the existence of such a complex. PfHsp70-x was not stable in the cell lysate that was prepared and this could explain why its interaction with hHop could not be ascertained. However, taken together the evidence from a previous independent study, and the predicted interaction of PfHsp70-x with human chaperones suggests cooperation of chaperone systems which possibly facilitates the folding and function of parasite proteins that are exported to the infected erythrocyte. / NRF
19

Comparative analysis of a chimeric Hsp70 of E. coli and Plasmodium falciparum origin relative to its wild type forms

Lebepe, Charity Mekgwa 18 May 2019 (has links)
MSc (Biochemistry) / Department of Biochemistry / Sustaining proteostasis is essential for the survival of the cell and altered protein regulation leads to many cellular pathologies. Heat shock proteins (Hsps) are involved in the regulation of the protein quality control. Hsps are a group of molecular chaperones that are upregulated in response to cell stress and some are produced constitutively. The Hsp70 family also known as DnaK in Escherichia coli (E. coli) is the most well-known group of molecular chaperones. Structurally, Hsp70s consist of a nucleotide binding domain (NBD) and a substrate binding domain (SBD) conjugated by a linker sub-domain. ATP binding and hydrolysis is central to the Hsp70 functional cycle. Hsp70s play a role in cytoprotection especially during heat stress in E. coli. Hsp70s from different organisms are thought to exhibit specialized cellular functions. As such E. coli Hsp70 (DnaK) is a molecular chaperone that is central to proteostasis in E. coli. On the other hand, Plasmodium falciparum Hsp70s are structurally amenable to facilitate folding of P. falciparum substrates. The heterologous production of P. falciparum proteins in E. coli towards drug discovery has been a challenge. There is need to develop tools that enhance heterologous expression and proper folding of P. falciparum proteins in an E. coli expression system. To this end, a chimeric Hsp70, KPf consisting of E. coli DnaK NBD and P. falciparum Hsp70-1 (PfHsp70-1) SBD was previously designed. KPf was shown to confer cytoprotection to E. coli DnaK deficient cells that were subjected to heat stress. In this study it was proposed that KPf has an advantage over E. coli DnaK and PfHsp70-1 in its function as a protein folding chaperone. Therefore, the main aim of this study was to characterize the chaperone function of KPf relative to the function of wild type E. coli and P. falciparum Hsp70s. The recombinant forms of KPf, DnaK and PfHsp70-1 proteins were successfully expressed and purified using nickel affinity chromatography. Circular Dichroism (CD) structural study demonstrated that KPf and PfHsp70-1 are predominantly α-helical and are also heat stable. Tertiary structure studies of PfHsp70-1 and KPf using tryptophan fluorescence revealed that both confirmations of recombinant proteins are perturbed by the presence of ATP more than ADP. Interestingly, the substrate binding capabilities of these proteins were comparable both in the absence or presence of nucleotides ATP/ADP. KPf is an independent chaperone, that exhibit nucleotide binding and hydrolysis. The current study has established unique structure-function features of KPf that distinguishes it from its “parental” forms, DnaK and PfHsp70-1. / NRF
20

Integrating indigenous and scientific knowledge in community-based early warning system development for climate-related malaria risk reduction in Mopani District of South Africa

Ramutsa, Brenda Nyeverwai January 2020 (has links)
PhD (Geography) / Department of Geography and Geo-Information Sciences / Malaria is a climate-change concatenated biological hazard that may, like any other natural hazard, can lead to a disaster if there is a failure in handling emergencies or risks. A holistic solution for malaria mitigation can be provided when indigenous knowledge is complemented with scientific knowledge. Malaria remains a challenge in South Africa and Limpopo province is the highest burdened malaria-endemic region. Specifically, Vhembe District is the highest burdened followed by Mopani District (Raman et al., 2016). This research sought to mitigate malaria transmissions in Mopani District through the integration of indigenous and scientific knowledge. The study was carried out in Mopani District of South Africa and 4 municipalities were involved. These are Ba-Phalaborwa, Greater Tzaneen, Greater Letaba, and Maruleng. A pragmatism philosophy was adopted hence the study took a mixed approach (sequential multiphase design). Data was collected from 381 selected participants through in-depth interviews, a survey and a focus group discussion. Participants for the in-depth interviews were obtained through snowballing and selected randomly for the survey, while for the focus group discussion purposive sampling was used. The study applied constructivist grounded theory to analyze qualitative data and to generate theory. Statistical Package for Social Sciences version 23.0 was used for quantitative data. Based on empirical findings, it was concluded that temperature and rainfall among other various factors exacerbate malaria transmission in the study area. Results of the study also show that people in Mopani District predict the malaria season onset by forecasting rainfall using various indigenous knowledge based indicators. The rainfall indicators mentioned by participants in the study were used in the developed early warning system. An Early warning system is an essential tool that builds the capacities of communities so that they can reduce their vulnerability to hazards or disasters. In the design of the system, Apache Cordova, JDK 1.8, Node JS, and XAMPP software were used. The study recommends malaria management and control key stakeholders to adopt the developed early warning system as a further mitigation strategy to the problem of malaria transmission in Mopani District. / NRF

Page generated in 0.0854 seconds