• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Hydrologic Model of the Provo River Basin, Utah

Jones, Craig T. 01 May 1973 (has links)
The purpose of this paper is to develop a general hydrologic model for use on a digital computer and prove it s validity by applying it to a management study of the Provo River Basin. Hydrologic equations have been proposed for each major hydrologic occurrence within a river basin. By linking these equations through restrictions on continuity of mass, a general hydrologic model can be obtained. Such a model becomes the basic tool for studying the management of the river basin hydrology. The paper describes the model components, parameter identification program, and the river basin management program.
2

Historical land cover impacts on water quality in the Provo River watershed, 1975 - 2002 /

Donaldson, Fredric J. January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geography, 2005. / Includes bibliographical references (p. 71-78).
3

Historical Land Cover Impacts on Water Quality in the Provo River Watershed, 1975 - 2002

Donaldson, Fredric James 05 October 2005 (has links) (PDF)
The Provo River watershed has experienced land cover change over the past several decades. Land cover influences water quality inasmuch as land cover determines the type and quantity of non-point source (NPS) pollutants that may enter the water. This study examines the historical impacts of land cover changes on water quality in the Provo River using remote sensing and statistical analysis. Statistical correlations and linear regressions were used to study the relationship between various land cover types and water quality variables for six years between 1975 and 2002. This thesis supports research finding myriad impacts of urban land cover on water quality. The study also revealed that increasing pH, alkalinity, and bicarbonate levels in the Provo River are likely related to increasing urbanization of the watershed.
4

The diatom flora of the Provo River, Utah

Lawson, Laurie Linwood 01 April 1974 (has links)
The present study was undertaken to investigate the diatom flora of a major river in northern Utah, to determine the diatom species present, and to illustrate them in a manner useful for future diatom researchers in the intermountain region. It is hoped that this work will aid in algal productivity, ecological, and taxonomic studies of Rocky Mountain streams and rivers.
5

An Analysis of the Provo River Decree and Its Current Application to Provo Area Water Rights

Busby, Karsten Eugene 09 July 2013 (has links) (PDF)
Water scarcity in the west has created a long history of conflict. When Utah was settled, laws were instituted (both officially and otherwise) that allowed water users to use streams and springs in efficient ways without causing harm to other users. The Provo River Decree is a physical example of local water law that has been in place for almost a hundred years. While many changes have arisen in its area of jurisdiction, it is still drawn upon to determine water rights. Ambiguity, rigidity, and overall changes to use patterns have limited the application of the decree to present situations. The current application of the Provo River Decree is therefore insufficient within the context of prior appropriation to deal with the fluid and changing nature of water use in the area. Additional research should be done to determine whether the system of prior appropriation in Utah is flexible enough to allow for changing use and human-controlled watercourses. This research should include an economic analysis on the impacts of free water right exchange on relative benefit of water rights as well as an analysis of the past and present impacts of external agencies on water use.
6

Improved Endmember Mixing Analysis (EMMA): Application to a Nested Catchment, Provo River, Northern Utah

Thompson, Alyssa Nicole 15 August 2023 (has links) (PDF)
An endmember mixing analysis (EMMA) is a hydrograph separation technique used to identify and quantify stream source contributions, but the error within the results of the analysis itself can be difficult to quantify. Employing EMMA to accurately quantify these contributions is particularly important for critical watersheds that supply water to large populations, such as montane watersheds. We applied EMMA to the Provo River, a nested catchment with three monitoring locations in northern Utah, to understand the limitations and potential improvements that could be made to EMMA. Four main endmembers (quartzite groundwater, soil water, snow and carbonate groundwater) were identified for the watershed and differentiated using the conservative tracers δ18O, δ2H, Si, HCO3-, Mg2+, K+, and Ca2+. In a traditional EMMA approach, a principal components analysis (PCA) is used to identify endmembers for a single location in a watershed, and the principal component (PC) scores are used to calculate the fractional contributions of each endmember. However, we found that calculating the fractional contributions of the endmembers in tracer space resulted in less error in the calculations compared to performing the calculation in PC defined space (U-space). Performing the mixing in tracer space with four endmembers showed that during spring runoff, snow was the main endmember with inputs ranging from 23 – 66% for the highest part of the watershed and 14 – 60% for the lowest part of the watershed. During baseflow, the stream was dominated by groundwater with contributions ranging from 23 – 60% quartzite groundwater for the upper part of the watershed and 30 – 57% carbonate groundwater for the lower part of the watershed. The amount of error present in the results depended on the scale of the catchment and the number of endmembers included, with more error in downstream locations relative to upstream locations. The nested catchment approach is a further improvement on traditional EMMA because it allows for identification of missing endmembers and error analysis for characterizing stream chemistry in several locations in a complex watershed.
7

A Post-Project Assessment of the Provo River Restoration Project: Channel Design, Reconfiguration, and the Re-Establishment of Critical Physical Processes

Goetz, Randy Ray 01 May 2008 (has links)
A physical assessment of the Provo River Restoration Project was undertaken in order to determine how alterations to the channel were designed, the nature of as-built channel morphology, and the performance of the reconfigured channel in terms of achieving frequent (2-year recurrence) bankfull discharge and increasing transient storage. Measures of channelized and reconfigured channel morphology were obtained using total station survey, digital aerial photography, and pebble counts. Results of geomorphic analysis were compared with similar measurements made by a regional consulting company, and stream channel design data, in order to determine that intended mitigation included reducing channel capacity, increasing sinuosity, decreasing pool spacing, and decreasing the size of bed material. Reconfiguration of the channel resulted in somewhat enlarged cross-sections with reduced mean velocities, increased sinuosity, decreased pool spacing, and decreased bed substrate size. One-dimensional hydraulic modeling suggests that alterations to channel morphology have increased the bankfull channel capacity in most reaches. Modeling results illustrate the fact that the stage of the 2-year recurrence flood is below bankfull at most cross-sections. This result does not follow the intentions of channel design. However, we have observed floodplain inundation in most years since reconfiguration. The occurrence floodplain inundation is being facilitated by overbank flow at a few point locations illustrating the strengths of incorporating variability into design. Known geomorphic controls on transient storage were reconfigured in manner to potentially increase in-channel and hyporheic components of transient storage. Stream tracer tests were utilized in order to determine the degree to which these alterations affected transient storage. Numerical analysis of stream tracer tests suggests that while the relative area of transient storage increased, average residence time of water in storage, and the mass transfer rate of solute between storage and the stream did not change. This suggests that an extensive hyporheic zone may not have been established. Correlations between hydrologic and geomorphic parameters indicate that in-stream storage may have been increased, and quick-exchange hyporheic flowpaths may have been created. (295 pages)
8

Habitat Selection of Greater Sage-Grouse Centrocercus urophasianus and Northern River Otters Lontra canadensis in Utah

Westover, Matthew D. 06 December 2012 (has links) (PDF)
Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed imagery, we proceeded to 1) determine which features of brood-rearing habitat could be identified using widely available, fine-scale imagery 2) assess the scale at which sage-grouse selected brood-rearing habitat in our study area, and 3) create a predictive habitat model that could be applied across our large study area to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of explanatory variables at three scales (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each scale were represented in our top model with the majority of scale-sensitive variables suggesting selection at the larger (795 meter) scale. When applied to our study area our top model predicted 75% of naive brood locations suggesting reasonable success using this method and widely available NAIP (National Agricultural Imagery Program) imagery. We encourage application of this method to other sage-grouse populations and species of conservation concern. The northern river otter is a cryptic semi-aquatic predator that establishes and uses latrines. Highly used river otter latrines indicate otter "activity centers" since frequency of scat deposition is thought to be correlated to frequency of habitat use. We compared an indirect method (scat counts) and a direct method (remote cameras) of determining latrine utilization in order to assess the accuracy of the commonly used indirect method. To further compare these methods we used them to examine effects of anthropogenic disturbance on otters of the Provo River in Utah. We found that overall the direct and indirect methods were highly correlated. There was significant seasonal variation in the degree of correlation between the indirect and direct methods with correlation being significantly higher in the summer. We found similar results when using these methods to examine effects of anthropogenic disturbance. For each method the distance of the latrine to trails was significant in one of the top competing models. We suggest that space use of otters in our study area is being affected by anthropogenic disturbance as measured by distance to trails. We also suggest that scat counts should only be conducted during the summer when they correlate best with actual levels of otter activity.

Page generated in 0.0642 seconds