• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical pH sensor based on carbon nanomaterials and metal redox chemistry

Shoghi, Fatemeh(Natasha) 06 1900 (has links)
Most pH sensors operate under potentiometric conditions using a simple two-electrode scheme. More generally, a conventional meter measures the electrical potential of the solution using a glass electrode (pH) against another electrode (reference), whose electrochemical potential is known and insensitive to pH. Modern pH sensors are robust, accurate and low cost, but they are limited by the macroscopic electrode size. They also require electrical contacts and they are often affected by errors associated with the contamination of the small electrode liquid junctions. This thesis targets pH measurements at nanoscale interfaces and explores the miniaturization of the pH sensor for local and remote (optical) measurements. By taking advantage of a non-destructive optical technique based on Raman spectroscopy and of the redox chemistry of metals, this work aims to develop a remote pH sensor based on carbon nanomaterials, namely the single walled carbon nanotube (SWCNT) and the graphene in the form of a single layer. By making use of the highly sensitive Raman response of metallic SWCNTs, we devised a pH responsive optical probe consisting of a SWCNT in direct contact with a platinum redox couple. When placed in a buffer solution, the Pt-SWCNT probe shows strong Raman shifts of the nanotube G-band as a function of pH, which is ascribed to charge transfer doping of the SWCNT reference electrode. Referenced potential measurements are demonstrated using a nanoscale version of the Pt-SWCNT electrode, along with the accurate monitoring of pH in solutions of different ionic strengths. Controlled experiments at a constant ionic strength show pH measurement across the full range between 1 to 12 with a best accuracy of ±500 mpH unit. This study also explores the influence of different transition metals (Pt, Ru and Pd), of semiconducting vs. metallic SWCNTs, and supporting substrates on pH sensing. A model based on electron transfer between the redox metal system and the SWCNT is proposed and tested using electrical conductance measurements. Due to the outstanding properties of graphene, such as a semi metallic behavior and its relatively inert surface, graphene was selected as a second nanomaterial to further investigate the Raman-pH sensing. From the study with SWCNTs, which determines optimal response with the Pt/PtO redox couple, we explore the Raman response of graphene coated with a thin layer of Pt in different buffer solutions of pH between 1 and 12. The spectra show clear evidence of charge transfer and doping of graphene in contact with the platinum redox couple. Significant Raman shift with pH is noted in the region of the G-band and also in D-band, which are consistent with the behavior found with the metallic Pt-SWCNT system. An analysis of the Raman shift provides a better understanding of the doping behavior observed for different pH. The analysis provides an estimate of the potential and confirms the Nernstian behavior of the pH sensor. Redox pH sensing at the nanoscale using carbon nanomaterials solves the main limitations highlighted above, namely coverage of the full pH range and a clear miniaturization of the sensor down to the nanometer scale. Although the accuracy requires further improvement, this work demonstrates for the first time an optical pH sensing scheme that is analogous to a conventional pH sensor equipped with a built-in internal reference. / La plupart des capteurs de pH fonctionnent dans des conditions potentiométriques en utilisant un schéma simple à deux électrodes. Plus généralement, un pH mètre classique mesure le potentiel électrique de la solution à l'aide d'une électrode en verre (pH) contre une autre électrode (référence), dont le potentiel électrochimique est connu et insensible au pH. Les capteurs de pH modernes sont robustes, précis et peu coûteux, mais ils sont limités par les tailles macroscopiques des électrodes. Ils nécessitent également des contacts électriques et sont souvent affectés par des erreurs liées à la contamination des petites jonctions liquides des électrodes. Cette thèse concerne l'amélioration des mesures de pH aux interfaces nanométriques et explore la miniaturisation du capteur de pH pour des mesures (optiques) locales et à distance. En tirant parti d'une technique optique non destructive basée sur la spectroscopie Raman et de la chimie redox des métaux, ce travail vise à développer un capteur de pH à distance à base de nanomatériaux de carbone, à savoir le nanotube de carbone à simple paroi (SWCNT) et le graphène monofeuillet. En utilisant la réponse Raman très sensible des SWCNT métalliques, nous avons conçu une sonde optique sensible au pH constituée d'un SWCNT en contact direct avec un couple redox platine. Lorsqu'elle est placée dans une solution tampon, la sonde Pt-SWCNT montre un fort décalage Raman de la bande G du nanotube en fonction du pH, qui est attribué au dopage par transfert de charge de l'électrode de référence SWCNT. La mesure du potentiel référencé est démontrée à l'aide d'une version nanométrique de l'électrode Pt-SWCNT, ainsi que par la surveillance précise du pH dans des solutions de différentes forces ioniques. Des expériences contrôlées à force ionique constante montrent des mesures de pH sur toute la gamme entre 1 et 12 avec une précision allant jusqu'à ± 500 mpH. Cette étude explore également l'influence de différents métaux de transition (Pt, Ru et Pd), du caractère électronique des SWCNTs et des substrats de soutien sur les détection de pH. Un modèle basé sur le transfert d'électrons entre le système métallique redox et le SWCNT est proposé et testé à l'aide de mesures de conductance électrique. En raison des propriétés exceptionnelles du graphène, telles qu'un comportement semi-métallique et une surface relativement inerte, le graphène a été sélectionné comme deuxième nanomatériau pour approfondir la détection Raman-pH. À partir de l'étude avec les SWCNT, qui détermine qu'une réponse optimale est obtenue avec le couple redox Pt / PtO, nous explorons la réponse Raman du graphène recouvert d'une fine couche de Pt dans différentes solutions tampons avec pH iv entre 1 et 12. Les spectres montrent des preuves claires de transfert de charge et dopage du graphène en contact avec le couple redox platine. Un décalage Raman significatif avec le pH est noté dans la région de la bande G et également dans la bande D, ce qui est cohérent avec le comportement trouvé avec le système Pt-SWCNT métallique. Une analyse du décalage Raman permet de mieux comprendre le comportement de dopage observé à différents pH. L'analyse fournit une estimation du potentiel et confirme le comportement Nerstien du capteur de pH. La détection de pH redox à l'échelle nanométrique avec des nanomatériaux de carbone permet de résoudre les principales limitations mises en évidence ci-dessus, à savoir la couverture de toute la gamme de pH et une miniaturisation claire du capteur jusqu'à l'échelle nanométrique. Bien que la précision nécessite une amélioration supplémentaire, ce travail démontre pour la première fois un schéma de détection optique du pH qui est analogue à un capteur de pH conventionnel équipé d'une référence interne intégrée.
2

Mise au point d'une méthode pour étudier les effets du dopage et des défauts sur le spectre Raman du graphène

Bourbonnais Sureault, David 04 1900 (has links)
Depuis la première synthèse du graphène, la spectroscopie Raman s'est imposée comme un standard pour la caractérisation de celui-ci. Le dopage et les défauts du graphène ont tous deux été étudiés abondamment à l'aide de spectromètres Raman en configuration confocal. Cependant, l'origine de toutes les bandes dans le spectre Raman du graphène n'est pas encore totalement comprise. Les bandes liées à la présence de défauts impliquent des processus de deuxièmes ordres qui se complexifient davantage avec le dopage du graphène. Aussi, la configuration confocal n'offre aucune information spatiale sur l'échantillon. Il est possible de générer une carte Raman par la prise de mesure point par point, mais ceci est un processus long et laborieux. Le RIMA, un appareil conçu dans le laboratoire du professeur Martel en collaboration avec Photon Etc, permet de pallier à ce problème. Avec un peu plus d'un million de spectres Raman mesurés en quelques heures sur une grande région, le RIMA permet de générer des cartes Raman d'une qualité exceptionnelle. Le RIMA est alors l'outil de choix pour l'étude présentée dans ce mémoire. L'objectif de ce mémoire est de mettre au point une méthode pour étudier l'effet du dopage et des défauts sur le spectre Raman du graphène. Pour obtenir des échantillons propices à l'étude, certains paramètres de la croissance du graphène par dépôt chimique en phase vapeur ont été étudiés. Le graphène a été dopé avec le couple oxydoréducteur Pt/PtO et des solutions tampons. Des cartes Raman ont été produites avec le RIMA. Ces cartes ont été prises à trois niveaux de dopage avant et après bombardement par ions d'argon. Les expériences sur la croissance ont permis d'obtenir des échantillons qui contiennent peu de bicouches, ce qui a permis de prendre des mesures sans tenir compte de leurs effets. Le dépôt de platine a été optimisé pour obtenir des particules dispersées de façon uniforme sur l'échantillon. Le dopage par le couple oxydoréducteur n'a pas été aussi efficace qu'attendu. L'analyse des cartes Raman a permis de révéler que le bombardement ne donne pas un résultat uniforme sur l'échantillon. L'hypothèse proposée pour expliquer l'écart du dopage et la non-uniformité des défauts est la présence de résidus de polymères à la surface du graphène avant le dépôt de platine. Ces résidus affecteraient le transfert de charge lors du dopage du graphène et protégeraient l'échantillon des ions d'argon lors du bombardement. / Since the first synthesis of graphene, Raman spectroscopy has become a standard for its characterization. Both doping and defects in graphene have been studied extensively using Raman spectrometers in confocal configuration. However, the origin of all bands in the Raman spectrum of graphene is not yet fully understood. The bands related to the presence of defects involve second order processes that become more complex with the doping of graphene. Also, the confocal configuration does not offer any spatial information on the sample. It is possible to generate a Raman map by taking point by point measurements, but this is a long and laborious process. The RIMA, a device designed in Professor Martel's laboratory in collaboration with Photon Etc, overcomes this problem. With a little more than a million Raman spectra measured in a few hours over a large area, the RIMA allows to generate Raman maps of exceptional quality. The RIMA is then the tool of choice for the study presented in this master's thesis. The objective of this master's thesis is to develop a method to study the effect of doping and defects on the Raman spectrum of graphene. To obtain suitable samples for the study, some parameters of graphene growth by chemical vapor deposition were studied. Graphene was doped with the redox couple Pt/PtO and buffer solutions. Raman maps were produced with the RIMA. These maps were taken at three doping levels before and after argon ion bombardment. Growth experiments yielded samples with few bilayers, allowing measurements to be taken without regard to their effects. Platinum deposition was optimized to obtain uniformly dispersed particles on the sample. Doping with the redox couple was not as effective as expected. The analysis of the Raman maps revealed that the bombardment does not give a uniform result on the sample. The hypothesis proposed to explain the doping discrepancy and the non-uniformity of the defects is the presence of polymer residues on the graphene surface before the platinum deposition. These residues would affect the charge transfer during the doping of the graphene and would protect the sample from argon ions during the bombardment.

Page generated in 0.0474 seconds