• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 26
  • 20
  • 16
  • 16
  • 14
  • 14
  • 14
  • 10
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Olfactory threshold and odor discrimination ability in children – evaluation of a modified “Sniffin’ Sticks” test

Gellrich, Janine, Stetzler, Carolin, Oleszkiewicz, Anna, Hummel, Thomas, Schriever, Valentin A. 14 November 2017 (has links) (PDF)
The clinical diagnostics of olfactory dysfunction in children turns out to be challenging due to low attention span, insufficient linguistic development and lack of odor experiences. Several smell tests have been developed for adults. Most of these examinations take a relatively long time and require a high level of concentration. Therefore, the aim of the current study was to evaluate an odor discrimination and olfactory threshold test using the frequently used “Sniffin’ Sticks” in children and adolescents in a simplified two-alternative-forced-choice version (2AFC) and compare it to the original three-alternative-forced-choice test (3AFC). One-hundred-twenty-one healthy participants aged between 5 and 17 years took part in this study. Within each of the two sessions participants underwent olfactory testing using the modified 2AFC as well as the standard 3AFC method. A better test-retest reliability was achieved using the original 3AFC method compared to the modified 2AFC. This was true for the odor discrimination as well as the olfactory threshold. Age had a significant influence on both tests, which should be considered when testing young children. We discuss these findings with relation to the existing norms and recommend using the 3AFC version due to a better test-retest reliability to measure olfactory function in children.
2

Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood

Wolff, Nicole, Roessner, Veit, Beste, Christian 27 March 2017 (has links) (PDF)
Executive functions, like the capacity to control and organize thoughts and behavior, develop from childhood to young adulthood. Although task switching and working memory processes are known to undergo strong developmental changes from childhood to adulthood, it is currently unknown how task switching processes are modulated between childhood and adulthood given that working memory processes are central to task switching. The aim of the current study is therefore to examine this question using a combined cue- and memory-based task switching paradigm in children (N = 25) and young adults (N = 25) in combination with neurophysiological (EEG) methods. We obtained an unexpected paradoxical effect suggesting that memory-based task switching is better in late childhood than in young adulthood. No group differences were observed in cue-based task switching. The neurophysiological data suggest that this effect is not due to altered attentional selection (P1, N1) or processes related to the updating, organization, and implementation of the new task-set (P3). Instead, alterations were found in the resolution of task-set conflict and the selection of an appropriate response (N2) when a task has to be switched. Our observation contrasts findings showing that cognitive control mechanisms reach their optimal functioning in early adulthood.
3

Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training

Enge, Sören, Fleischhauer, Monika, Gärtner, Anne, Reif, Andreas, Lesch, Klaus-Peter, Kliegel, Matthias, Strobel, Alexander 31 March 2017 (has links) (PDF)
Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.
4

A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags

Müller, Andreas, Neukam, Martin, Ivanova, Anna, Sönmez, Anke, Münster, Carla, Kretschmar, Susanne, Kalaidzidis, Yannis, Kurth, Thomas, Verbavatz, Jean-Marc, Solimena, Michele 04 April 2017 (has links) (PDF)
Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.
5

Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

Schneider, Kai, Lieboldt, Matthias, Liebscher, Marco, Fröhlich, Maik, Hempel, Simone, Butler, Marko, Schröfl, Christof, Mechtcherine, Viktor 27 July 2017 (has links) (PDF)
Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.
6

Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements

Bernhardt, Anne, Schamel, Martha, Gbureck, Uwe, Gelinsky, Michael 30 November 2017 (has links) (PDF)
Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement modification because of their high cytocompatibility and support of active resorption by osteoclasts.
7

A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags

Müller, Andreas, Neukam, Martin, Ivanova, Anna, Sönmez, Anke, Münster, Carla, Kretschmar, Susanne, Kalaidzidis, Yannis, Kurth, Thomas, Verbavatz, Jean-Marc, Solimena, Michele 04 April 2017 (has links)
Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.
8

Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training

Enge, Sören, Fleischhauer, Monika, Gärtner, Anne, Reif, Andreas, Lesch, Klaus-Peter, Kliegel, Matthias, Strobel, Alexander 31 March 2017 (has links)
Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.
9

Olfactory threshold and odor discrimination ability in children – evaluation of a modified “Sniffin’ Sticks” test

Gellrich, Janine, Stetzler, Carolin, Oleszkiewicz, Anna, Hummel, Thomas, Schriever, Valentin A. 14 November 2017 (has links)
The clinical diagnostics of olfactory dysfunction in children turns out to be challenging due to low attention span, insufficient linguistic development and lack of odor experiences. Several smell tests have been developed for adults. Most of these examinations take a relatively long time and require a high level of concentration. Therefore, the aim of the current study was to evaluate an odor discrimination and olfactory threshold test using the frequently used “Sniffin’ Sticks” in children and adolescents in a simplified two-alternative-forced-choice version (2AFC) and compare it to the original three-alternative-forced-choice test (3AFC). One-hundred-twenty-one healthy participants aged between 5 and 17 years took part in this study. Within each of the two sessions participants underwent olfactory testing using the modified 2AFC as well as the standard 3AFC method. A better test-retest reliability was achieved using the original 3AFC method compared to the modified 2AFC. This was true for the odor discrimination as well as the olfactory threshold. Age had a significant influence on both tests, which should be considered when testing young children. We discuss these findings with relation to the existing norms and recommend using the 3AFC version due to a better test-retest reliability to measure olfactory function in children.
10

Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements

Bernhardt, Anne, Schamel, Martha, Gbureck, Uwe, Gelinsky, Michael 30 November 2017 (has links)
Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement modification because of their high cytocompatibility and support of active resorption by osteoclasts.

Page generated in 0.0532 seconds