Spelling suggestions: "subject:"pulmões - ions"" "subject:"pulmões - bons""
1 |
Sistema eletrônico para captação de sons respiratórios adventícios em animais submetidos à ventilação mecânicaValenga, Marcelo Henrique 28 April 2009 (has links)
Nesta dissertação, apresenta-se o projeto e a implementação de um instrumento portátil para captação dos sons respiratórios adventícios de forma não invasiva, a partir das vias aéreas, em animais submetidos a ventilação mecânica e com lavagem previa com solução salina. Descrevem-se os ensaios para avaliação da resposta em frequência e sensibilidade do microfone de eletreto que foi fixado nos tubos de um ventilador mecânico de uma Unidade de Terapia Intensiva – UTI, o comportamento da propagação dos sons nos tubos do aparelho de ventilação mecânica e as características dos circuitos eletrônicos projetados para realizar a adequação e digitalização dos sinais sonoros captados pelos microfones e transferidos para um software de gravação instalado em um computador pessoal. Os testes do sistema eletrônico de captação dos sons foram realizados em três porcos submetidos a ventilação mecânica e com monitoramento em tempo real da quantidade de ar nos pulmões através de um tomógrafo de impedância elétrica. Como resultado das gravações, foi possível identificar ruídos de crepitação, induzidos nos animais através de manobras ventilatórias. Conclui-se que o circuito desenvolvido e a fixação do microfone nos tubos possibilitam a captação dos ruídos de crepitação em animais submetidos a ventilação mecânica, evidenciando a boa propagação dos sons ao longo das vias aéreas do sistema respiratório. Discute-se também a possibilidade de utilizar esse sistema em conjunto com o sistema de tomografia por impedância elétrica para identificar a duração e a extensão das alterações no recrutamento pulmonar durante a ventilação mecânica. / This essay presents the project of a portable equipment to capture adventitious respiratory sounds, inside the airways, in animals submitted at mechanical ventilation. It is described the tests for assessment of frequency response and sensitivity of the microphone that was fixed in the tubes of a mechanical ventilator, the behavior of sound propagation in tubes of the system and the characteristics of electronic circuits designed to acquire sound signals by microphones and transferred them to a recording software installed on a personal computer. Tests with the electronic system were performed in three pigs submitted to mechanical ventilation and monitoring in real time the amount of air into the lungs through electrical impedance tomography. Through the recorded sound, it was possible to identify crackles induced in animals by ventilator maneuvers. It was possible to conclude that the developed circuit and setting the microphone in the tube allows to capture crackle sounds on animals with mechanical ventilation, showing a good sound propagation along the airways of the respiratory system. It is also discussed the possibility of using this system with the Electric Impedance Tomography - EIT - to identify the duration and extent of changes in alveolar recruitment during pulmonary ventilation.
|
2 |
Propostas de técnicas para caracterização e classificação automática de sons pulmonares adventíciosRiella, Rodrigo Jardim 2010 October 1914 (has links)
Nesta tese, descrevem-se técnicas matemáticas visando a caracterização e classificação de sons pulmonares adventícios, por meio de sua análise espectral. Para alcançar este objetivo, desenvolveu-se duas novas metodologias, que utilizam Análise em Multiresolução, implementada a partir da Transformada Wavelet Discreta. A primeira metodologia desenvolvida é utilizada para classificar automaticamente os sons pulmonares em quatro grupos: sons normais e sons adventícios contínuos e descontínuos, notificando também o caso de ocorrência das duas anomalias no mesmo ciclo respiratório. Durante o processamento, o ciclo respiratório é decomposto até seu décimo nível, calculando a energia dos coeficientes detalhe em cada nível de decomposição, assim como a energia dos coeficientes de aproximação. Deste cálculo, obtém-se uma curva de variação da energia em relação ao nível de decomposição, sendo que as curvas obtidas se mostraram curvas caracterísitcas em relação ao tipo de som adventício. Tais curvas são aplicadas a uma simulação de Rede Neural Artificial de Função de Base Radial, que atua como classificador entre os quatro grupos. Esta técnica foi testada utilizando dez wavelets, sendo treinadas cem redes neurais para cada uma. Os melhores resultados apresentaram índice de acerto entre 88% e 92,36% para o conjunto de teste, em um total de 275 ciclos respiratórios. A segunda metodologia, denominada Filtragem por Análise Espectral Seletiva, decompõe o som pulmonar até seu quarto nível, calculando o espectro dos coeficientes aproximação e, baseado na componente de frequência prepoderante, calcula um filtro FIR multibanda. Este filtro é utilizado para eliminar todas as {sic} componentes espectrais dos coeficientes de aproximação, com exceção do mais proeminente. Após o procedimento de filtragem, o sinal é recomposto através de reconstrução wavelet. Para a avaliação de seus resultados, foram testadas dez wavelets no processo de decomposição e reconstrução. Para a wavelet que apresentou melhores resultados, obteve-se uma atenuação dos sons cardíacos da ordem de 6dB em relação aos sons adventícios que ocorrem na mesma faixa espectral, utilizando a Densidade Espectral de Potência dos sinais como referência. Esta metodologia mostrou resultados satisfatórios na tarefa de eliminar tanto os ruídos relativos ao fluxo aéreo normal nas vias aeríferas quanto os sons cardíacos, mantendo somente os sons adventícios nas gravações de sons pulmonares. / In this thesis, the investigation of methods to characterize and classify adventitious lung sounds by spectral analysis is described. To accomplish this task, two novel techniques were developed, through Multiressolution Analysis, based on the Discrte Wavelet Transform. The first technique aims to detect abnormal sounds and classity them info four groups: normal, continuous and discontinuous adventitions lung sounds, also notifying their simultaneous occurence. During its processing, the respiratory cycle signal is decomposed up to its tenth level, and the energy present in the detail and approximation coefficients for each decomposition level is calculated, resulting on a curve of energy versus decomposition level. The resulting curves show different signatures for each kind of adventitious sound. These signatures are used as data source for a classifier system based on Radial Basis Function Artificial Neural Networks. This technique was tested for ten different wavelets, training a hundred neural networks for each wavelet, totalizing a thousand neural networks trained. The best performance rates for each wavelet reach values from 88% to 92.36% for the test group, in a set of 275 respiratory cycles. In the second technique, named Filtering by Selective Spectral Analysis, the lung sound is decomposed until its fourth level, the approximation coefficients spectra are calculatedand, based on the highest frequency component found on those coefficients, a multiband FIR filter is determined. This filter is used to eliminate all frequency components in the approximation coefficients except the highest one. After the filtering procedure, the signal is recomposed by wavelet reconstruction. In order to evaluate the proposed technique, ten wavelets were used in the decomposition and reconstruction stages. The wavelet which presented the best performance attenuated heart sounds 6 dB more than the adventitious sounds that occur in the same spectral band. For measuring this attenuation, the Power Spectral Density was used. This procedure showed satisfactory results, elimination the normal airflow noise and cardiac sounds, leaving only the adventitious sounds in the recorded lung sounds.
|
3 |
Propostas de técnicas para caracterização e classificação automática de sons pulmonares adventíciosRiella, Rodrigo Jardim 2010 October 1914 (has links)
Nesta tese, descrevem-se técnicas matemáticas visando a caracterização e classificação de sons pulmonares adventícios, por meio de sua análise espectral. Para alcançar este objetivo, desenvolveu-se duas novas metodologias, que utilizam Análise em Multiresolução, implementada a partir da Transformada Wavelet Discreta. A primeira metodologia desenvolvida é utilizada para classificar automaticamente os sons pulmonares em quatro grupos: sons normais e sons adventícios contínuos e descontínuos, notificando também o caso de ocorrência das duas anomalias no mesmo ciclo respiratório. Durante o processamento, o ciclo respiratório é decomposto até seu décimo nível, calculando a energia dos coeficientes detalhe em cada nível de decomposição, assim como a energia dos coeficientes de aproximação. Deste cálculo, obtém-se uma curva de variação da energia em relação ao nível de decomposição, sendo que as curvas obtidas se mostraram curvas caracterísitcas em relação ao tipo de som adventício. Tais curvas são aplicadas a uma simulação de Rede Neural Artificial de Função de Base Radial, que atua como classificador entre os quatro grupos. Esta técnica foi testada utilizando dez wavelets, sendo treinadas cem redes neurais para cada uma. Os melhores resultados apresentaram índice de acerto entre 88% e 92,36% para o conjunto de teste, em um total de 275 ciclos respiratórios. A segunda metodologia, denominada Filtragem por Análise Espectral Seletiva, decompõe o som pulmonar até seu quarto nível, calculando o espectro dos coeficientes aproximação e, baseado na componente de frequência prepoderante, calcula um filtro FIR multibanda. Este filtro é utilizado para eliminar todas as {sic} componentes espectrais dos coeficientes de aproximação, com exceção do mais proeminente. Após o procedimento de filtragem, o sinal é recomposto através de reconstrução wavelet. Para a avaliação de seus resultados, foram testadas dez wavelets no processo de decomposição e reconstrução. Para a wavelet que apresentou melhores resultados, obteve-se uma atenuação dos sons cardíacos da ordem de 6dB em relação aos sons adventícios que ocorrem na mesma faixa espectral, utilizando a Densidade Espectral de Potência dos sinais como referência. Esta metodologia mostrou resultados satisfatórios na tarefa de eliminar tanto os ruídos relativos ao fluxo aéreo normal nas vias aeríferas quanto os sons cardíacos, mantendo somente os sons adventícios nas gravações de sons pulmonares. / In this thesis, the investigation of methods to characterize and classify adventitious lung sounds by spectral analysis is described. To accomplish this task, two novel techniques were developed, through Multiressolution Analysis, based on the Discrte Wavelet Transform. The first technique aims to detect abnormal sounds and classity them info four groups: normal, continuous and discontinuous adventitions lung sounds, also notifying their simultaneous occurence. During its processing, the respiratory cycle signal is decomposed up to its tenth level, and the energy present in the detail and approximation coefficients for each decomposition level is calculated, resulting on a curve of energy versus decomposition level. The resulting curves show different signatures for each kind of adventitious sound. These signatures are used as data source for a classifier system based on Radial Basis Function Artificial Neural Networks. This technique was tested for ten different wavelets, training a hundred neural networks for each wavelet, totalizing a thousand neural networks trained. The best performance rates for each wavelet reach values from 88% to 92.36% for the test group, in a set of 275 respiratory cycles. In the second technique, named Filtering by Selective Spectral Analysis, the lung sound is decomposed until its fourth level, the approximation coefficients spectra are calculatedand, based on the highest frequency component found on those coefficients, a multiband FIR filter is determined. This filter is used to eliminate all frequency components in the approximation coefficients except the highest one. After the filtering procedure, the signal is recomposed by wavelet reconstruction. In order to evaluate the proposed technique, ten wavelets were used in the decomposition and reconstruction stages. The wavelet which presented the best performance attenuated heart sounds 6 dB more than the adventitious sounds that occur in the same spectral band. For measuring this attenuation, the Power Spectral Density was used. This procedure showed satisfactory results, elimination the normal airflow noise and cardiac sounds, leaving only the adventitious sounds in the recorded lung sounds.
|
Page generated in 0.0326 seconds