• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 17
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 24
  • 22
  • 21
  • 19
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Correlation Study of Radio Giant Pulses and Very High Energy Photons from the Crab Pulsar / Eine Korrelationsstudie zwischen Riesenpulsen im Radiobereich und Photonen im Gammabereich vom Pulsar im Krebsnebel

Lewandowska, Natalia Ewelina January 2015 (has links) (PDF)
Pulsars (in short for Pulsating Stars) are magnetized, fast rotating neutron stars. The basic picture of a pulsar describes it as a neutron star which has a rotation axis that is not aligned with its magnetic field axis. The emission is assumed to be generated near the magnetic poles of the neutron star and emitted along the open magnetic field lines. Consequently, the corresponding beam of photons is emitted along the magnetic field line axis. The non-alignment of both, the rotation and the magnetic field axis, results in the effect that the emission of the pulsar is only seen if its beam points towards the observer. The emission from a pulsar is therefore perceived as being pulsed although its generation is not. This rather simple geometrical model is commonly referred to as Lighthouse Model and has been widely accepted. However, it does not deliver an explanation of the precise mechanisms behind the emission from pulsars (see below for more details). Nowadays more than 2000 pulsars are known. They are observed at various wavelengths. Multiwavelength studies have shown that some pulsars are visible only at certain wavelengths while the emission from others can be observed throughout large parts of the electromagnetic spectrum. An example of the latter case is the Crab pulsar which is also the main object of interest in this thesis. Originating from a supernova explosion observed in 1054 A.D. and discovered in 1968, the Crab pulsar has been the central subject of numerous studies. Its pulsed emission is visible throughout the whole electromagnetic spectrum which makes it a key figure in understanding the possible mechanisms of multiwavelength emission from pulsars. The Crab pulsar is also well known for its radio emission strongly varying on long as well as on short time scales. While long time scale behaviour from a pulsar is usually examined through the use of its average profile (a profile resulting from averaging of a large number of individual pulses resulting from single rotations), short time scale behaviour is examined via its single pulses. The short time scale anomalous behaviour of its radio emission is commonly referred to as Giant Pulses and represents the central topic of this thesis. While current theoretical approaches place the origin of the radio emission from a pulsar like the Crab near its magnetic poles (Polar Cap Model) as already indicated by the Lighthouse model, its emission at higher frequencies, especially its gamma-ray emission, is assumed to originate further away in the geometrical region surrounding a pulsar which is commonly referred to as a pulsar magnetosphere (Outer Gap Model). Consequently, the respective emission regions are usually assumed not to be connected. However, past observational results from the Crab pulsar represent a contradiction to this assumption. Radio giant pulses from the Crab pulsar have been observed to emit large amounts of energy on very short time scales implying small emission regions on the surface of the pulsar. Such energetic events might also leave a trace in the gamma-ray emission of the Crab pulsar. The aim of this thesis is to search for this connection in the form of a correlation study between radio giant pulses and gamma-photons from the Crab pulsar. To make such a study possible, a multiwavelength observational campaign was organized for which radio observations were independently applied for, coordinated and carried out with the Effelsberg radio telescope and the Westerbork Synthesis Radio Telescope and gamma-ray observations with the Major Atmospheric Imaging Cherenkov telescopes. The corresponding radio and gamma-ray data sets were reduced and the correlation analysis thereafter consisted of three different approaches: 1) The search for a clustering in the differences of the times of arrival of radio giant pulses and gamma-photons; 2) The search for a linear correlation between radio giant pulses and gamma-photons using the Pearson correlation approach; 3) A search for an increase of the gamma-ray flux around occurring radio giant pulses. In the last part of the correlation study an increase of the number of gamma-photons centered on a radio giant pulse by about 17% (in contrast with the number of gamma-photons when no radio giant pulse occurs in the same time window) was discovered. This finding suggests that a new theoretical approach for the emission of young pulsars like the Crab pulsar, is necessary. / Pulsare (Kurzform von Pulsating Stars) sind stark magnetisierte, rotierende Neutronensterne. Nach dem Standardmodell ist ein Pulsar ein Neutronenstern mit einer Rotationsachse, die nicht entlang der Achse seines Magnetfelds ausgerichtet ist. Es wird angenommen, dass die Pulsarstrahlung in der Nähe der Pole des Neutronensterns an offenen Magnetfeldlinien entsteht. Der dadurch entstehende Photonenstrahl wird entlang der Magnetfeldachse emittiert. Die unterschiedlichen Ausrichtungen der Rotations- und Magnetfeldachse führen dazu, dass die Strahlung des Pulsars von einem Beobachter nur wahrgenommen wird, wenn der Photonenstrahl die Sichtlinie des Beobachters überstreicht. Durch diesen Effekt wird beim Beobachter der Anschein erweckt die Pulsarstrahlung sei gepulst, obwohl sie kontinuerlich produziert wird. Dieses vereinfachte geometrische Model, in der Literatur oftmals als Leuchtturm Modell bezeichnet, ist heutzutage weitestgehend akzeptiert. Es liefert dennoch keine Erklärung für die genaue Entstehung der Pulsarstrahlung (siehe weiter unten). Heutzutage sind mehr als 2000 Pulsare bekannt und werden mittlerweile nicht nur bei Radiowellenlängen untersucht. Multiwellenlängenstudien haben zu der Entdeckung geführt, dass einige Pulsar nur in bestimmten Wellenlängenbereichen sichtbar sind, während die Strahlung von anderen Pulsaren in weiten Teilen des elektromagnetischen Spektrums nachgewiesen werden kann. Ein Beispiel für letzteren Fall ist der Crab Pulsar, das Objekt das die vorliegende Arbeit hauptsächlich betrachtet. Entstanden in einer Supernova, die im Jahre 1054 n.Chr. beobachtet wurde, wurde er 1968 als stellarer Überrest dieser Explosion entdeckt und seitdem im Rahmen zahlreicher Studien untersucht. Seine gepulste Strahlung kann im gesamten elektromagnetischen Spektrum nachgewiesen werden. Diese Eigenschaft macht ihn zu einem Schlüsselobjekt für die Erforschung möglicher Emissionsmechanismen der Strahlung von Pulsaren. Eine weitere Besonderheit des Crab Pulsars liegt auch in dem anomalen Verhalten seiner Radiostrahlung auf kurzen Zeitskalen. Während das Langzeitverhalten eines Pulsars mittels seines mittleren Pulsprofiles (eines Profils resultierend aus der Mittelung vieler Einzelpulse aus einzelnen Rotationen) untersucht wird, wird das Kurzzeitverhalten mittels einzelner Pulse untersucht. Als anomales Verhalten der Radiostrahlung des Crab Pulsars auf diesen kurzen Zeitskalen sind die sogenannten Riesenpulse (Giant Pulses) von Interesse. Einzelpulse dieser Art sind der zentrale zu untersuchende Aspekt der vorliegenden Arbeit. Gängige theoretische Modelle gehen davon aus, dass die Radiostrahlung eines Pulsars in der Nähe der Pole entsteht (Polar Cap Model), wie zuvor vom Leuchtturm Model impliziert wurde, während die hochfrequente Strahlung, wie z.B. die gamma-Strahlung, weiter außen in der Magnetosphäre, die den Pulsar umgibt, entsteht (Outer Gap Model). Ausgehend von diesen beiden theoretischen Ansätzen, wird angenommen, dass die entsprechenden Entstehungsregionen nicht miteinander verbunden sind. Die bisherigen Beobachtungen des Crab Pulsars widersprechen jedoch dieser Annahme. Untersuchungen der Riesenpulse des Crab Pulsars im Radiobereich haben ergeben, dass diese Einzelpulse große Energiemengen binnen sehr kurzen Zeitskalen freisetzen. Dieses Phänomen deutet auf sehr kleine Emissionsregionen auf der Oberfläche des Pulsars hin. Eine Freisetzung dieser Energiemengen könnte auch Spuren im Bereich der hochenergetischen gamma-Strahlung hinterlassen. Das Ziel der vorliegenden Arbeit ist daher eine Untersuchung einer möglichen Verbindung zwischen den Radiopulsen des Crab Pulsars im Radiobereich und seiner gamma-Strahlung in der Form einer Korrelationsstudie. Um eine solche Studie zu ermöglichen, wurde eine Multiwellenlängen Beobachtungskampagne organisiert. Im Rahmen dieser Kampagne wurden selbstständig Radiobeobachtungen am Effelsberger Radioteleskop und am Westerbork Synthesis Radio Telescope und gamma-Beobachtungen an den Major Atmospheric Imaging Cherenkov Teleskopen erfolgreich beantragt, koordiniert und (teilweise selbstständig vor Ort) ausgeführt. Die daraus entstehenden Datensätze wurden entsprechend bearbeitet und in der resultierenden Korrelationsanalyse wurden die folgenden Aspekte untersucht: 1) Eine Anhäufung in den Ankunftszeiten von Riesenpulsen und gamma-Photonen; 2) Eine Suche nach einer linearen Korrelation zwischen Riesenpulsen und gamma-Photonen mittels der Pearson Korrelation; 3) Eine Suche nach einer Erhöhung des Flusses von gamma-Photonen in der zeitlichen Umgebung eines Riesenpulses im Radiobereich. Im letzten Teil der Analyse konnte eine Erhöhung der Anzahl von gamma-Photonen, die zeitlich auf einem Riesenpuls zentriert sind, von ungefähr 17% (im Vergleich zu der entsprechenden Anzahl im gleichen Zeitfenster, wenn kein Riesenpuls vorhanden ist) nachgewiesen werden. Dieses Ergebnis gibt einen wichtigen Impuls für die Überarbeitung der bereits vorhandenen Emissionsmodelle von jungen Pulsaren wie dem Crab Pulsar.
12

Binary pulsars: evolution and fundamental physics

Ferdman, Robert Daniel 05 1900 (has links)
In the standard theory of pulsar spin-up, a neutron star (NS) in a binary system accretes matter from its companion star; this serves to transfer angular momentum to the NS, increasing the spin frequency of the pulsar. Measurement of the orbital parameters and system geometry, and in particular the final system masses, thus provide important constraints for theories regarding binary evolution. We present results from an investigation of three binary pulsar systems. PSR J1802-2124 is in an intermediate-mass pulsar binary system with a massive white dwarf companion in a compact orbit with a period of 16.8 hours. We have per-formed timing analysis on almost five years of data in order to determine the amount of Shapiro delay experienced by the incoming pulsar signal as it traverses the potential well of the companion star on its way to Earth. We find the pulsar in this system to have a relatively low mass at 1.24 ± 0.11 M®, and the companion mass to be 0.79 ± 0.04111.).We argue that the full set of system properties indicates that the system underwent a common-envelope phase in its evolutionary history. The double pulsar system PSR 0737-3039A/B is a highly relativistic double neutron star (DNS) binary, with a 2.4-hour orbital period. The low mass of the second-formed NS, as well the low system eccentricity and proper motion, have suggested a different evolutionary scenario compared to other known DNS systems. We describe analysis of the pulse profile shape over six years of observations, and present the constraints this provides on the system geometry. We find the recycled pulsar in this system, PSR 0737-3039A,to have a low misalignment angle between its spin and orbital angular momentum axes, with a 95.4% upper limit of 14 °, assuming emission from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron captures onto an 0-Ne-Mg core. We have also conducted timing analysis of PSR J1756-2251 using four years of data, and have obtained tight constraints on the component masses and orbital parameters in this DNS system. We have measured four post-Keplerian timing parameters for this pulsar; the Shapiro delay s parameter, with a 5% measured uncertainty, is consistent at just above the la level with the predictions of general relativity. The pulsar in this system has a fairly typical NS mass of 1.312 ± O.017M®, and the companion NS to be relatively light, with a mass of 1.2581017 Mo. This, together with the somewhat low orbital eccentricity of this system (e 0.18), suggests a similar evolution to that of the double pulsar. We investigate this further, through a similar pulse profile analysis to that performed with PSR J0737-3039A, with the goal of constraining the geometry of this system.
13

Binary pulsars: evolution and fundamental physics

Ferdman, Robert Daniel 05 1900 (has links)
In the standard theory of pulsar spin-up, a neutron star (NS) in a binary system accretes matter from its companion star; this serves to transfer angular momentum to the NS, increasing the spin frequency of the pulsar. Measurement of the orbital parameters and system geometry, and in particular the final system masses, thus provide important constraints for theories regarding binary evolution. We present results from an investigation of three binary pulsar systems. PSR J1802-2124 is in an intermediate-mass pulsar binary system with a massive white dwarf companion in a compact orbit with a period of 16.8 hours. We have per-formed timing analysis on almost five years of data in order to determine the amount of Shapiro delay experienced by the incoming pulsar signal as it traverses the potential well of the companion star on its way to Earth. We find the pulsar in this system to have a relatively low mass at 1.24 ± 0.11 M®, and the companion mass to be 0.79 ± 0.04111.).We argue that the full set of system properties indicates that the system underwent a common-envelope phase in its evolutionary history. The double pulsar system PSR 0737-3039A/B is a highly relativistic double neutron star (DNS) binary, with a 2.4-hour orbital period. The low mass of the second-formed NS, as well the low system eccentricity and proper motion, have suggested a different evolutionary scenario compared to other known DNS systems. We describe analysis of the pulse profile shape over six years of observations, and present the constraints this provides on the system geometry. We find the recycled pulsar in this system, PSR 0737-3039A,to have a low misalignment angle between its spin and orbital angular momentum axes, with a 95.4% upper limit of 14 °, assuming emission from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron captures onto an 0-Ne-Mg core. We have also conducted timing analysis of PSR J1756-2251 using four years of data, and have obtained tight constraints on the component masses and orbital parameters in this DNS system. We have measured four post-Keplerian timing parameters for this pulsar; the Shapiro delay s parameter, with a 5% measured uncertainty, is consistent at just above the la level with the predictions of general relativity. The pulsar in this system has a fairly typical NS mass of 1.312 ± O.017M®, and the companion NS to be relatively light, with a mass of 1.2581017 Mo. This, together with the somewhat low orbital eccentricity of this system (e 0.18), suggests a similar evolution to that of the double pulsar. We investigate this further, through a similar pulse profile analysis to that performed with PSR J0737-3039A, with the goal of constraining the geometry of this system.
14

Binary pulsars: evolution and fundamental physics

Ferdman, Robert Daniel 05 1900 (has links)
In the standard theory of pulsar spin-up, a neutron star (NS) in a binary system accretes matter from its companion star; this serves to transfer angular momentum to the NS, increasing the spin frequency of the pulsar. Measurement of the orbital parameters and system geometry, and in particular the final system masses, thus provide important constraints for theories regarding binary evolution. We present results from an investigation of three binary pulsar systems. PSR J1802-2124 is in an intermediate-mass pulsar binary system with a massive white dwarf companion in a compact orbit with a period of 16.8 hours. We have per-formed timing analysis on almost five years of data in order to determine the amount of Shapiro delay experienced by the incoming pulsar signal as it traverses the potential well of the companion star on its way to Earth. We find the pulsar in this system to have a relatively low mass at 1.24 ± 0.11 M®, and the companion mass to be 0.79 ± 0.04111.).We argue that the full set of system properties indicates that the system underwent a common-envelope phase in its evolutionary history. The double pulsar system PSR 0737-3039A/B is a highly relativistic double neutron star (DNS) binary, with a 2.4-hour orbital period. The low mass of the second-formed NS, as well the low system eccentricity and proper motion, have suggested a different evolutionary scenario compared to other known DNS systems. We describe analysis of the pulse profile shape over six years of observations, and present the constraints this provides on the system geometry. We find the recycled pulsar in this system, PSR 0737-3039A,to have a low misalignment angle between its spin and orbital angular momentum axes, with a 95.4% upper limit of 14 °, assuming emission from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron captures onto an 0-Ne-Mg core. We have also conducted timing analysis of PSR J1756-2251 using four years of data, and have obtained tight constraints on the component masses and orbital parameters in this DNS system. We have measured four post-Keplerian timing parameters for this pulsar; the Shapiro delay s parameter, with a 5% measured uncertainty, is consistent at just above the la level with the predictions of general relativity. The pulsar in this system has a fairly typical NS mass of 1.312 ± O.017M®, and the companion NS to be relatively light, with a mass of 1.2581017 Mo. This, together with the somewhat low orbital eccentricity of this system (e 0.18), suggests a similar evolution to that of the double pulsar. We investigate this further, through a similar pulse profile analysis to that performed with PSR J0737-3039A, with the goal of constraining the geometry of this system. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
15

Estimating Properties of a Young Pulsar through X-ray Observations - An Investigation of Parameter Dependence

Ali, Lurin January 2022 (has links)
Studying the properties of newborn neutron stars is a complicated matter since they cannot be directly observed. Neutron stars are born when some massive stars go supernova (SN), where the expelled material from the explosion goes on to shield the young neutron star from our view by absorbing its radiation. To estimate properties such as their flux, luminosity and magnetic field strength, upper limits can be found by modeling the emission and absorption and then performing spectral fitting. The assumptions made when modeling can cause the results to differ, this thesis investigates which parameters in the model have the most impact by analysing an X-ray observation of SN 1909A. The varied model parameters are the photon index of the neutron star emission, the density of the SN ejecta, and the composition of the ejecta material. The density can vary depending on the line of sight since SN explosions are asymmetrical, and it is found that this parameter carries most significance, with maximal result variations of about 55% for most ejecta compositions. The least significant parameter is the assumed photon index of the emission from the neutron star, this is found to only cause maximal variations of around 24%. Furthermore, the upper limits on the total luminosity computed by assuming different model parameters, differ by a factor 2.5 at most. The minimum upper limit to the total luminosity of the neutron star of SN 1909A is found to be L_min = 3.6 * 10^6 L⊙ and the corresponding relation between its rotational period and magnetic field is B < 1.88 * 10^20 P^2 G s^-1.
16

Probing the Interstellar Medium on AU Size Scales Using Pulsar Scintillation

Hill, Alexander S. January 2004 (has links)
No description available.
17

Improving Pulsar Timing through Interstellar Scatter Correction

Hemberger, Daniel January 2007 (has links)
No description available.
18

Méthode de détection de sources individuelles d'ondes gravitationnelles par chronométrie d'un réseau de pulsars : application aux données de l'EPTA

Lassus, Antoine 03 December 2013 (has links) (PDF)
L'existence des ondes gravitationnelles, fluctuations de l'espace-temps lui-même, a été prédite sans, pour l'instant, qu'une détection directe n'ait été encore possible. A l'heure actuelle, des méthodes consistant en des détecteurs interférométriques de plusieurs kilomètres de long sont à l'oeuvre pour permettre une première détection. Nous proposons, dans cette thèse, d'étudier une autre méthode : la chronométrie d'un réseau de pulsars milliseconde. Elle consiste en l'observation régulière et la datation précise des impulsions radio en provenance de pulsars ultrastables. L'onde gravitationnelle produisant retards ou avances des impulsions sur Terre, nous recherchons sa présence sous forme d'un signal corrélé entre les observations faites des différents pulsars du réseau. Dans un premier temps, nous détaillons les processus d'observation et de chronométrie des pulsars, pour nous pencher sur un cas particulier avec le pulsar J1614-2230. Puis, nous présentons les ondes gravitationnelles et leurs sources ainsi que les différentes méthodes de détection. Nous décrivons tout particulièrement la méthode de chronométrie d'un réseau de pulsars appliquée à la recherche d'un signal en provenance d'un système binaire de tous noirs supermassifs. Ensuite, après avoir détaillé les outils statistiques et numériques utilisés, nous appliquons notre méthode à l'injection d'un tel signal dans les observations réelles faites dans le cadre de l'EPTA. Enfin, nous présentons les limites supérieures sur l'amplitude d'un signal en provenance d'un système binaire obtenues sur ces données sans injection grâce à notre méthode en fonction de la fréquence et de la position de la source.
19

Contribution of multipolar electromagnetic fields to the radio and high energy emission of pulsars / Contribution des champs électromagnétiques multipolaires à l'émission radio et haute énergie des pulsars

Kundu, Anu 17 September 2018 (has links)
L'étude du champ électromagnétique autour des étoiles à neutrons est l'une des méthodes vitales pour comprendre la physique des pulsars. Alors que la plupart des publications utilisent l'hypothèse d'un champ électromagnétique dipolaire centré standard, des études récentes se sont concentrées sur l'inclusion de composantes de champ multipolaire plus élevées et ont présenté une image plus générale pour les pulsars dans lesquels le moment du dipôle magnétique est décalé du centre de l'étoile. Ce travail discute des conséquences d'un dipôle magnétique rotatif excentré dans le vide en montrant diverses caractéristiques des lignes de champ magnétique et de l'émission de pulsar. Une étude à large bande du spectre du rayonnement pulsar est également présentée par la création de cartes des différentes régions d'émission des pulsars distinguées sur la base de leur fréquence dans le but principal de rechercher l'évolution du profil d'impulsion avec la fréquence. La thèse présente tous les résultats ci-dessus accompagnés des discussions nécessaires pour comprendre les modèles théoriques utilisés et les détails des méthodes numériques appliquées. / Studying the electromagnetic field around neutron stars is one of the vital methods to understand the physics of the pulsars. While major literature uses assumption of a standard centred dipolar electromagnetic field, recent studies have focused on including higher multipolar field components and have presented a more generalized picture for pulsars in which the magnetic dipole moment is shifted off from the centre of the star. This work discusses the consequences of an off centred rotating magnetic dipole in vacuum by showing various characteristic features of magnetic field lines and pulsar emission. A broadband spectrum study of pulsar radiation is also laid out by creating maps of different emission regions of pulsars distinguished on the basis of their frequency with the main aim of looking for the evolution of the pulse profile with frequency. The thesis presents all the above results accompanied by the necessary discussions to understand the theoretical models used and the details of the numerical methods applied.
20

Exploration d'un grand relevé à Nançay et diversité de la population de pulsars / Exploitation of the Nançay large survey : the diversity of pulsar population

Octau, Franck 21 November 2017 (has links)
Depuis la découverte du premier pulsar en 1967, nous connaissons désormais plus de 2500 pulsars aujourd’hui. Les pulsars offrent un champ d’études considérable : depuis l’étude des propriétés du milieu interstellaire et l’étude de la magnétosphère des pulsars jusqu’aux tests de la gravité en champ fort et la caractérisation d’un fond d’ondes gravitationnelles d’origine cosmologique. Cela explique pourquoi nous continuons de chercher de nouveaux pulsars de nos jours. Après des découvertes de pulsars millisecondes dans les sources non identifiées du Fermi Large Area Telescope, un programme de recherche de nouveaux pulsars a été mené à partir de 2012 par G. Desvignes. Observant à 1.4 GHz avec une haute résolution temporelle et fréquentielle, le programme SPAN512 a été conçu pour la recherche de pulsars rapides et lointains situés dans le plan Galactique. Nous décrirons les méthodes d’analyse mises en place pour traiter les données afin de trouver de nouveaux pulsars, méthodes soit basées sur la stabilité de la période de rotation des pulsars soit sur leur émission d’impulsions individuelles. Nous présenterons aussi l’état actuel de l’analyse du programme SPAN512 et les découvertes effectuées, plus particulièrement du pulsar trouvé au cours de ce travail de thèse, PSR J2055+3829, un pulsar milliseconde de période de rotation de 2.08 ms appartenant à un système de type « Veuve Noire ». Ce sera l’occasion de présenter les études chronométriques réalisées pour trouver l’éphéméride de ce pulsar et, dans le même temps, j’en profiterai pour parler d’une analyse similaire faite sur le pulsar J1618-3921, un pulsar dans une orbite excentrique. Enfin, nous présenterons des études polarimétriques de pulsars réalisées à la lumière d’un nouveau modèle, le modèle du vecteur tournant décentré (DRVM). Nous montrerons qu’un champ magnétique hautement décentré peut expliquer les variations brusques de l’angle de polarisation. / Since the discovery of the first pulsar in 1967, we know over 2500 pulsars today. Pulsars offer a broad range of studies: from the study of the properties of interstellar medium and of pulsar magnetospheres up to test of gravity in the strong-field regime and the characterisation of the cosmological Gravitation Waves background. This explains why we keep searching pulsars nowadays. After successful detections of new millisecond pulsars in Fermi Large Area Telescope unassociated sources at Nançay, a blind pulsar survey was initiated in 2012 by G. Desvignes. Conducted at 1.4 GHz with short sampling time and narrow frequency channels, the SPAN512 was designed to find fast and distant pulsars within the Galactic plane. We describe the methods to analyse data in order to find new pulsars, thanks to their spin stability or tto their single pulses. We will also describe the current status of the survey and the discoveries, more especially the pulsar discovered during this thesis, PSR J2055+3829, a 2.08 ms pulsar in a black widow system. It will be the opportunity to present the radio timing analysis of this pulsar and, in the same time, we will describe similar studies conducted on the pulsar J1618-3921, a pulsar in an eccentric orbit. Finally, we present some polarisation studies of pulsars in light of a new model, the Decentred Rotating Vector Model (DRVM). We will show that a highly decentred dipole may explain abrupt variations of polarisation profiles.

Page generated in 0.0761 seconds